Embracing Explicit
Communication in Work-
Stealing Runtime Systems

Andreas Prell

Vlanycore Processors

» “Cluster-on-chip” architectures
* |ncreasing thread- and data-level parallelism

* Growing importance of scalable communication

CORS Conaater) 0O%2 Comtoter 3

i JL o | | _ /|[PS4C | [2sexn o
[R — - (16K8 L2 Troffc
| - 0 |hll-ll-lhl.l-| PS4C FSB MIU > TO
i e [T | e | il | e | i : [
A .‘) pz.‘o: - :: (\:7:’:' " R R R R PS4C 256KB Passi ng
N we : : %‘ (4- N |l'll| (16xB L2
SRR - MCHR—R—R—R—R—

4] -~ 4] ~
-~ -~

Left. S. Bell et al., TILE64™ Processor: A 64-Core SoC with Mesh Interconnect, ISSCC 2008
Center: T. Mattson et al., The 48-Core SCC Processor: The Programmer’s View, SC 2010
Right. A. Sodani et al., Knights Landing: Second-Generation Intel Xeon Phi Product, IEEE Micro 2016

From lhreads to lasks

Make it easy to express fine-grained task parallelism

int recurse(int n)
{

if (n < 2) return base case();
int X;

std::thread t([&] {
X = recurse(n-1);

IF
int y = recurse(n-2); ’f\/‘v\

t.join(); A

return x + y; Threads

From lhreads to lasks

Make it easy to express fine-grained task parallelism

int recurse(int n)
{

if (n < 2) return base case();

spawn recurse(n-1);
recurse(n-2);

1nt X
int vy

SYync; /‘)\
return x + vy, /.\

} A

Tasks

From lhreads to lasks

Runtime system manages parallel execution

Task Pool
O 0000

Thread Pool

Central versus Distributed

Task Pools
GCC: GNU libgomp, ICC: Intel OpenMP RTL

| GCC4.9.1 -
ICC 14.0.1 —e—

N
&)

N
o

—k
6))

223X

—k
o

6))

Speedup over seq. execution

o

0 8 16 24 32 40 48
Number of threads

Benchmark: UTS T3L (binomial tree of ~111 million nodes)

| oad Balancing through
Work Stealing

| oad Balancing through
Work Stealing

push @

Wi Wa W5

| oad Balancing through
Work Stealing

push @

Wi Wa W5

| oad Balancing through
Work Stealing

Pop

Wi Wa W5

| oad Balancing through
Work Stealing

pPop

| oad Balancing through
Work Stealing

pPop

| oad Balancing through
Work Stealing

steal

Wi

| oad Balancing through
Work Stealing

| oad Balancing througn
Work Stealing

Shared deques

o || e

W Wo W5

| oad Balancing througn
Work Stealing

Private deques

o || e

W Wo W5

| oad Balancing througn
Work Stealing

pPop

Private deques

o x o

W Wo W5

| oad Balancing througn
Work Stealing

Private deques

o || e

Steal
Wo W5

Request

Wi

| oad Balancing througn
Work Stealing

steal

Private deques

o || e

W Wo W5

| oad Balancing througn
Work Stealing

steal

Private deques

o u @

| oad Balancing througn
Work Stealing

Private deques

o u @

Embracing explicit
Communication

Requirements

Work-stealing scheduling

Explicit communication — Efficient message
passing, private-access deques

Task synchronization — Collective, individual
Coarse-grained parallelism — Polling

Fine-grained parallelism — Adaptive stealing
strategies, granularity control

Channels

Simple message passing abstraction:

bool channel send(Channel *, void =*, size t);

bool channel _receive(Channel =*, void %, size t);

Bounded FIFO message queues

Building blocks: (@mese | (§ sesc

Steal Requests

struct steal_request f{
Channel #*chan;
int thief;

Steal Requests

struct steal_request req = {
.chan = .spsc :

.thief = ID,
};

int 1 = select victim();

channel_send(. mpsc [i1], &req, sizeof(req));

Two channels per worker

Steal Requests

Steal
Req uest

Steal Requests

___ACK:
Wi —othine > Nothin

Steal Requests

Stea1
We—xcovest > Request

Steal Requests

Steal Requests

|[dea: Eliminate ACKs by forwarding steal requests

Steal
Request

Steal Requests

|[dea: Eliminate ACKs by forwarding steal requests

| Steal f

Request

Steal Requests

|[dea: Eliminate ACKs by forwarding steal requests

Steal Requests

Forwarding 1100
1000 |
* reduces number of messages £ o0
E 800}
» facilitates asynchronous stealing £ 70/,
o 600
Ll>j 500 d%
. off Acknowledging =l
* improves performance . Forvarding —e—

o 1 2 3 4 5 6 7 8 9 10

/m Task length (us)

Benchmark: BPC with d = 105, n =9, and t as shown (x-axis)

Stealing Tasks

One task

I-In-I-Ei A

Send T or &T to thief

Stealing Tasks

One task

E I - EJ K8

Send T or &T to thief
Share memory by communicating”

*A. Gerrand, https://blog.golang.org/share-memory-by-communicating, 13 July 2010

https://blog.golang.org/share-memory-by-communicating

Stealing Tasks

n/2| tasks

2 2R 2

Send &H' to thief

Stealing Tasks

Task length 100 ps

48

| Steal-one =——fij——
| Steal-half =——@—

Speedup over seq. execution

0 8 16 24 32 40 48
Number of workers

Benchmark: SPC with n = 106and t = 100 ps

Stealing Tasks

Task length 10 us

48

| Steal-one =——fij——
| Steal-half =——@—

Speedup over seq. execution

0 8 16 24 32 40 48
Number of workers

Benchmark: SPC with n = 108and t = 10 us

Task Synchronization

lask Barrier

#include <stdio.h> #include <stdio.h>
#include "tasking.h" #include <omp.h>
ASYNC_VOID DECL (int main(void)
puts, const char =*s, s {
); #tpragma omp parallel
{
int main(void) #tpragma omp master
{ {
TASKING_INIT(); #tpragma omp task
puts("Order");
ASYNC(puts, "Order"); #tpragma omp task
ASYNC(puts, "Undefined"); puts("Undefined");
}
TASKING_BARRIER(); #pragma omp barrier
#pragma omp master
ASYNC(puts, "Last"); {
#fipragma omp task
TASKING EXIT(); puts("Last");
return 0; }
} }
return 0;

Termination Detection with
Steal Requests

Problem: Detect when all workers are idle without
resorting to implicit communication

|[dea: “Color” steal requests
— Avoids separate control messages

— Termination follows from forwarding

Extended Steal Requests

struct steal _request 1{
Channel #*chan;
int thief;
enum {
working,
1dle,
reg idle
} state;

Extended Steal Requests

Forward
to manager

Forward Forward reg 1dle| Forward

Forward
to thief

NO YES struct steal_request {

Channel =*chan;

int thief;

enum {
working,
1dle,
reg_idle

Send steal request } state;

‘ b

Extended Steal Requests

Forward
to manager

Forward Forward reg 1dle| Forward

Forward
to thief
NO YES
switch (req.state) {
case 1idle:
break;
}

Send steal request

o

Notifying the Manager

Steal
Request
(reg_idle)

Wi) Manager

Notifying the Manager

Wi) Manager
Update!

Notifying the Manager

Manager

Updates

Worker | I o 3
@
®
S 3 =
S % 9
. e % .
Worker | 2 J2
(reg_idle) Ji]
o
%
Manager 2.
m1 me ms

struct steal_request f{
Channel =*chan;
int thief;
enum {
working,
idle,
reg idle,
update
} state;

switch (reqg.state) {
case update:

break;
case idle:

break;

lask Barrier

Impact of explicit communication

Max. task barrier latency (us)

6000

5000

4000

3000

2000

1000

0

Return steal request after N attempts =—li—
| Return steal request after 10 attempts —@—

60 120 180 240
Number of workers N

lask Barrier

Impact of explicit communication

100

—— Worker O cancels a random
Steal requests + cancel after barrier ==

| Steal requests + worker 0 as manager —@— worker's steal request

80 Intel OpenMP barrier == = i /

60

40

No additional
communication required

60 120 180 240
Number of workers N

Min. task barrier latency (us)

Channel-based Futures

spawn f(n-1);
F(n-2); /.\AA?\

int X
int vy
sync;

future fx = FUTURE(f, n-1);
int y = f(n-2);
int x = AWAIT(fx, int);

Channel-based Futures

FUTURE

1. Allocates a one-element SPSC channel
2. Creates a task, passing the channel

3. Returns a handle to the channel (future)

Channel-based Futures

AWAIT

1. Waits for the task to send its result
2. Recelves and returns the result

3. Frees or recycles the channel

Channel-based Futures

AWAIT

ries to schedule other work to avoid idling

Performance

Fork/join parallelism

S 48— S 48 ————— § 48 ————————
= | Futures w/ caching i = | Futures w/ caching —=ejilje— = Futures w/ caching i
§ 40 Cilk Plus § 40 Cilk Plus § 40 | | CiIk‘PIus ——
Eg : : Eg : : Eg : : : : :
= 32 & 32 = 32 r
(0] [] [(0] [
oo24 S 24 ® o4 |
q>3 | q>,> | q>3 |
© 16 © 16 © 16 +
g 8 g 8 g 8
S . S . S LS
CD O (D O CD O
O 8 16 24 32 40 48 O 8 16 24 32 40 48 O 8 16 24 32 40 48
Number of workers Number of workers Number of workers

Benchmarks from left to right:
Tree recursion with n =34 and t = 1 pys | 14 Queens Problem | Cilksort of 108 integers

Adaptive Strategies

Adaptive Stealing

@

Adaptive Stealing

|dea: Reevaluate strategy after IV steals
Count how many tasks have been executed: M

M/N =1
M/N < 2

M/N > 1

Adaptive Stealing

Task length 10 ps

1800 —_————————
| | Steal-half

1600 A Steal-adaptive N =23 ==
Steal-adaptive N = 5 =@

Steal-adaptive N = 10 e

1400 [\ : -

~ Steal-adaptive N = 25 s

~ Steal-adaptive N = 50
1200 P3O N\ =

Steal-one = - - -

Execution time (ms)

1000 | “&. A, :

800

600 L o ————
8 16 24 32 40 48

Number of workers

Benchmark: BPC with d=10% n=9, and t= 10 ps

Adaptive Stealing

Task length 10 ps

2500 ————————— ———————

2000 PN\ :
| Steal-one

1500 ¢ """"""""""""""""" """ Steal-adaptive N = 3

Steal-adaptive N = 10
Steal-adaptive N = 25
Steal-adaptive N = 50

1000 |

e
Steal-adaptive N = 5 ==@u=
E—

Execution time (ms)

500 t

Number of workers

Benchmark: BPC with d =1, n=999,999, and t = 10 us

Very Fine-grained lasks

Task length 1 s

8 I
| | | Steal-one =i

LA e S Steal-half ——e— -

6 N Steal-adaptive e |

S N

4

41 for (1 = 0; 1 < N; 1++)
ASYNC(F, i, ...);

Speedup over seq. execution

0 8 16 24 32 40 48
Number of workers

Benchmark: SPC with n = 106and t= 1 s

Splittable Tasks

Task length 1 s

48

Steal-adaptive b

40 + Lazy work splitting —.-—

| | ASYNC_FOR (
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVV } -F ? O ? N ?

2 e s e e :
P -

N |

i for (i = 0; 1 < N; 1++)
ASYNC(f, i, ...);

Speedup over seq. execution

0 8 16 24 32 40 48
Number of workers

Benchmark: SPC with n = 106and t= 1 s

|_azy Binary Splitting

Assumes concurrent work-stealing deques:

Worker splits when local deque is empty, otherwise
executes tasks sequentially

— Splitting is lazy as opposed to eager

— Chunking (granularity control) is implicit

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

|_azy Binary Splitting

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

|_azy Binary Splitting

a) ()

1/

__ _J _ _J
Avallable to thieves

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

| azy Guided Splitting

Example: Four workers

| azy Guided Splitting

Example: Four workers

() ()

3/4

_) _ _J
Avallable to thieves

|_azy Adaptive Splitting

Example: Two workers are idle

|_azy Adaptive Splitting

Example: Two workers are idle

2/3

Avallable to thieves

_azy Splitting

Neither strategy Is fruly lazy
Difficult to know which strategy works best

— EXxplicit communication solves this problem

|_azy Adaptive Splitting

Example: Worker receives two steal requests

|_azy Adaptive Splitting

Example: Worker receives two steal requests

|_azy Adaptive Splitting

Example: Worker receives two steal requests

~

\

~

_J

~

—

1/3

~

_J

~

—

1/3

~

_J

Send to thieves

Performance

Lazy Splitting

Binary spliting "1 Adaptive splitting NN
Guided splitting [

c 48
s |l
o 40
)

o 1
© 3
o
)

D24
(€0 I SS—
>

®) 16
Q.

a |
® 8r
o |
o

®» 0

FG CG

——
Balanced Unbalanced

Benchmark: Parallel loops of Fine, Coarse, Random, Increasing, and Decreasing Granularity

Performance

Mixing tasks and splittable tasks

Speedup over seq. execution

Cilk Plus]

Guided splitting [

Binary splitting "] Adaptive splitting NN

9
Size of splittable consumer tasks

99

999 9999 99999

Benchmark: BPC with d = [104, 103, ..., 1], n=1[9, 99, ..., 99999], and t = 10 us

Performance

Mixing tasks and splittable tasks

Single tasks [1| Guided splitting [
Binary spliting "1 Adaptive splitting NN

9 99

S 48

"(:—'3 ,,
Q40 | L
a<) ,,
O_32 """
=/ R BN
L Yt —— | = .
q>) ,,
O 16 [(S| |
% IS U U UUUUUUTUUOTOUOTUIUUUUITINE -tir o2 o MO I | (| U N DR N
- IhAEE
g ,,,
o O_IZH:I- —

o

999 9999 99999
Size of splittable consumer tasks

Benchmark: BPC with d = [105, 104, ..., 10], n=1[9, 99, ..., 99999], and t= 1 us

Conclusion

Performance Ranking

Average deviations from the best median speedups

2-socket Intel Xeon

4-socket AMD Opteron

o60-core Intel Xeon Phi
(240 threads)

(24 threads)
1. Chase-LevWS -1.6 %
2. Channel WS 2.4 %
3. Cilk Plus -4.6 %

4. Intel OpenMP -10.7 %

(48 threads)
1. Chase-LevWS -22%
2. Channel WS 2.4 %
3. Cilk Plus -6.9 %

4. Intel OpenMP -21.8 %

1. Chase-Lev WS -13.7 %
2. Channel WS -13.7 %
3. Intel OpenMP -22.2 %
4. Cilk Plus -28.1 %

21 benchmarks/workloads (20 in the case of Cilk Plus)

David Chase and Yossi Lev, Dynamic Circular Work-Stealing Deque, SPAA 2005

summary

* Work-stealing runtime system with

e private deques

Flexibility ¢/
e channel communication
» Workers
e forward steal requests
e adapt their stealing strategy Performance v

e split tasks lazily

