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Manycore Processors
• “Cluster-on-chip” architectures 

• Increasing thread- and data-level parallelism 

• Growing importance of scalable communication 

Left: S. Bell et al.,TILE64TM Processor: A 64-Core SoC with Mesh Interconnect, ISSCC 2008 
Center: T. Mattson et al., The 48-Core SCC Processor: The Programmer’s View, SC 2010 
Right: A. Sodani et al., Knights Landing: Second-Generation Intel Xeon Phi Product, IEEE Micro 2016



From Threads to Tasks
Make it easy to express fine-grained task parallelism

int recurse(int n) 
{ 
    if (n < 2) return base_case(); 

    int x; 

    std::thread t([&] { 
        x = recurse(n-1); 
    }); 

    int y = recurse(n-2); 
     
    t.join(); 

    return x + y; 
} Threads



From Threads to Tasks
int recurse(int n) 
{ 
    if (n < 2) return base_case(); 

    int x = spawn recurse(n-1); 
    int y = recurse(n-2); 

    sync; 

    return x + y; 
}

Make it easy to express fine-grained task parallelism

Tasks



Task Pool

Thread Pool

From Threads to Tasks
Runtime system manages parallel execution

::
:

::
:

::
:

::
:



Central versus Distributed 
Task Pools
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Load Balancing through 
Work Stealing
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Load Balancing through 
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Embracing Explicit 
Communication



Requirements
• Work-stealing scheduling 

• Explicit communication → Efficient message　
passing, private-access deques 

• Task synchronization → Collective, individual 

• Coarse-grained parallelism → Polling 

• Fine-grained parallelism → Adaptive stealing 
strategies, granularity control



Channels
Simple message passing abstraction: 
bool channel_send(Channel *, void *, size_t); 

bool channel_receive(Channel *, void *, size_t); 

Bounded FIFO message queues 

Building blocks:    MPSC    SPSC



struct steal_request { 
    Channel *chan; 
    int thief; 
    // ... 
};

Steal Requests



struct steal_request req = { 

    .chan =       , 

    .thief = ID, 

    // ... 

}; 

int i = select_victim(); 

channel_send(      [i], &req, sizeof(req));

Steal Requests

   MPSC

   SPSC

Two channels per worker
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Steal Requests

W1 W2 W3

Idea: Eliminate ACKs by forwarding steal requests



…

Forwarding 

• reduces number of messages 

• facilitates asynchronous stealing 

• improves performance 

Steal Requests

Benchmark: BPC with d = 105, n = 9, and t as shown (x-axis) 
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H

Stealing Tasks

T

One task

T’

Send T or &T to thief 
Share memory by communicating*

*A. Gerrand, https://blog.golang.org/share-memory-by-communicating, 13 July 2010

https://blog.golang.org/share-memory-by-communicating


H

Stealing Tasks

T

tasks

Send &H’ to thief

bn/2c
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Stealing Tasks
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Stealing Tasks
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Task Synchronization



Task Barrier
#include <stdio.h> 
#include "tasking.h" 

ASYNC_VOID_DECL ( 
    puts, const char *s, s 
); 

int main(void) 
{ 
    TASKING_INIT(); 

    ASYNC(puts, "Order"); 
    ASYNC(puts, "Undefined"); 

    TASKING_BARRIER(); 

    ASYNC(puts, "Last"); 

    TASKING_EXIT(); 
    return 0; 
} 

#include <stdio.h> 
#include <omp.h> 

int main(void) 
{ 
    #pragma omp parallel 
    { 
        #pragma omp master 
        { 
            #pragma omp task 
            puts("Order"); 
            #pragma omp task 
            puts("Undefined"); 
        } 
        #pragma omp barrier 
        #pragma omp master 
        { 
            #pragma omp task 
            puts("Last"); 
        } 
    } 
    return 0; 
} 



Termination Detection with 
Steal Requests

Problem: Detect when all workers are idle without 
resorting to implicit communication 

Idea: “Color” steal requests  

→ Avoids separate control messages 

→ Termination follows from forwarding



Extended Steal Requests
struct steal_request { 
    Channel *chan; 
    int thief; 
    enum { 
        working, 
        idle, 
        reg_idle 
    } state; 
    // ... 
}; 



Extended Steal Requests

struct steal_request { 
    Channel *chan; 
    int thief; 
    enum { 
        working, 
        idle, 
        reg_idle 
    } state; 
    // ... 
}; 

working idle reg_idle



Extended Steal Requests

working idle reg_idle

// Manager receives req 
switch (req.state) { 
case idle: 
 // Mark reg_idle 
 break; 
} 



Steal 
Request 
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W1 W2 Manager



Update!

Notifying the Manager

W1 W2 Manager



Notifying the Manager

W1 W2 Manager



Steal request

Updates
Worker i

Worker j j2

i3

Manager

m2 m3

i1

m1

Update

Steal request

i2

j1

Task

(reg_idle)

struct steal_request { 
    Channel *chan; 
    int thief; 
    enum { 
        working, 
        idle, 
        reg_idle, 
        update 
    } state; 
    // ... 
}; 

// Manager receives req 
switch (req.state) { 
case update: 
    // ... 
    break; 
case idle: 
    // ... 
    break; 
} 



Task Barrier
Impact of explicit communication 
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Task Barrier
Impact of explicit communication 
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Channel-based Futures
int x = spawn f(n-1); 
int y = f(n-2); 
sync; 

future fx = FUTURE(f, n-1); 
int y = f(n-2); 
int x = AWAIT(fx, int); 



future fx = FUTURE(f, n-1); 
int y = f(n-2); 
int x = AWAIT(fx, int); 

Channel-based Futures

1. Allocates a one-element SPSC channel 
2. Creates a task, passing the channel 

3. Returns a handle to the channel (future)



future fx = FUTURE(f, n-1); 
int y = f(n-2); 
int x = AWAIT(fx, int); 

Channel-based Futures

1. Waits for the task to send its result 
2. Receives and returns the result 

3. Frees or recycles the channel



future fx = FUTURE(f, n-1); 
int y = f(n-2); 
int x = AWAIT(fx, int); 

Channel-based Futures

Tries to schedule other work to avoid idling 



Performance
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Benchmarks from left to right: 
Tree recursion with n = 34 and t = 1 µs | 14 Queens Problem | Cilksort of 108 integers



Adaptive Strategies



Adaptive Stealing



Adaptive Stealing

Steal-one Steal-half

Idea: Reevaluate strategy after     stealsN

Count how many tasks have been executed:

M/N = 1

M/N < 2

M/N > 1 M/N � 2

M



Adaptive Stealing

Benchmark: BPC with d = 105, n = 9, and t = 10 µs

Task length 10 µs
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Adaptive Stealing

Benchmark: BPC with d = 1, n = 999,999, and t = 10 µs

Task length 10 µs
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Very Fine-grained Tasks

Benchmark: SPC with n = 106 and t = 1 µs 
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for (i = 0; i < N; i++) 
    ASYNC(f, i, ...); 



Splittable Tasks

Benchmark: SPC with n = 106 and t = 1 µs 

Task length 1 µs
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for (i = 0; i < N; i++) 
    ASYNC(f, i, ...); 

ASYNC_FOR (  
    f, 0, N, ... 
); 



Lazy Binary Splitting
Assumes concurrent work-stealing deques:  
 
Worker splits when local deque is empty, otherwise 
executes tasks sequentially 

→ Splitting is lazy as opposed to eager 

→ Chunking (granularity control) is implicit 

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010



Lazy Binary Splitting

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010



Lazy Binary Splitting

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

Available to thieves

1/2



Lazy Guided Splitting
Example: Four workers



Lazy Guided Splitting
Example: Four workers

Available to thieves

3/4



Lazy Adaptive Splitting
Example: Two workers are idle



Lazy Adaptive Splitting
Example: Two workers are idle

Available to thieves

2/3



Lazy Splitting

Neither strategy is truly lazy 

Difficult to know which strategy works best  
 
→ Explicit communication solves this problem 



Lazy Adaptive Splitting
Example: Worker receives two steal requests



Lazy Adaptive Splitting
Example: Worker receives two steal requests



Lazy Adaptive Splitting
Example: Worker receives two steal requests

Send to thieves

1/31/3



Performance
Lazy Splitting

Benchmark: Parallel loops of Fine, Coarse, Random, Increasing, and Decreasing Granularity
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Performance
Mixing tasks and splittable tasks
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Performance
Mixing tasks and splittable tasks

Benchmark: BPC with d = [105, 104, …, 10], n = [9, 99, …, 99999], and t = 1 µs
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Conclusion



Performance Ranking

2-socket Intel Xeon  
(24 threads)

1. Chase-Lev WS -1.6 %

2. Channel WS -2.4 %
3. Cilk Plus -4.6 %
4. Intel OpenMP -10.7 %

4-socket AMD Opteron 
(48 threads)

1. Chase-Lev WS -2.2 %

2. Channel WS -2.4 %
3. Cilk Plus -6.9 %
4. Intel OpenMP -21.8 %

60-core Intel Xeon Phi  
(240 threads)

1. Chase-Lev WS -13.7 %

2. Channel WS -13.7 %
3. Intel OpenMP -22.2 %
4. Cilk Plus -28.1 %

Average deviations from the best median speedups 

21 benchmarks/workloads (20 in the case of Cilk Plus) 

David Chase and Yossi Lev, Dynamic Circular Work-Stealing Deque, SPAA 2005



Summary
• Work-stealing runtime system with 

• private deques 

• channel communication 

• Workers 

• forward steal requests  

• adapt their stealing strategy 

• split tasks lazily

Flexibility ✔ 

Performance ✔

}

}


