
Embracing Explicit
Communication in Work-

Stealing Runtime Systems
Andreas Prell

Manycore Processors
• “Cluster-on-chip” architectures

• Increasing thread- and data-level parallelism

• Growing importance of scalable communication

Left: S. Bell et al.,TILE64TM Processor: A 64-Core SoC with Mesh Interconnect, ISSCC 2008
Center: T. Mattson et al., The 48-Core SCC Processor: The Programmer’s View, SC 2010
Right: A. Sodani et al., Knights Landing: Second-Generation Intel Xeon Phi Product, IEEE Micro 2016

From Threads to Tasks
Make it easy to express fine-grained task parallelism

int recurse(int n)
{
 if (n < 2) return base_case();

 int x;

 std::thread t([&] {
 x = recurse(n-1);
 });

 int y = recurse(n-2);

 t.join();

 return x + y;
} Threads

From Threads to Tasks
int recurse(int n)
{
 if (n < 2) return base_case();

 int x = spawn recurse(n-1);
 int y = recurse(n-2);

 sync;

 return x + y;
}

Make it easy to express fine-grained task parallelism

Tasks

Task Pool

Thread Pool

From Threads to Tasks
Runtime system manages parallel execution

::
:

::
:

::
:

::
:

Central versus Distributed
Task Pools

 0

 5

 10

 15

 20

 25

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of threads

GCC 4.9.1
ICC 14.0.1

GCC: GNU libgomp, ICC: Intel OpenMP RTL

Benchmark: UTS T3L (binomial tree of ~111 million nodes)

223x}

Load Balancing through
Work Stealing

W1 W2 W3

A

B

Load Balancing through
Work Stealing

W1 W2 W3

push B

A

B

Load Balancing through
Work Stealing

W1 W2 W3

push C

C

B

A

C

Load Balancing through
Work Stealing

W1 W2 W3

pop

B

A

Load Balancing through
Work Stealing

W1 W2 W3

B

A

pop

Load Balancing through
Work Stealing

W1 W2 W3

B

A

pop

Load Balancing through
Work Stealing

W1 W2 W3

B

A

steal

Load Balancing through
Work Stealing

W1 W2 W3

B

A

Load Balancing through
Work Stealing

W1 W2 W3

B

A
Shared deques

Load Balancing through
Work Stealing

W1 W2 W3

B

A
Private deques

Load Balancing through
Work Stealing

W1 W2 W3

B

A

pop

Private deques

Steal
Request

Load Balancing through
Work Stealing

W1 W2 W3

B

A
Private deques

Load Balancing through
Work Stealing

W1 W2 W3

B

A
Private deques

steal

Load Balancing through
Work Stealing

W1 W2 W3

B

Private deques

steal

A

Load Balancing through
Work Stealing

W1 W2 W3

B

Private deques

Embracing Explicit
Communication

Requirements
• Work-stealing scheduling

• Explicit communication → Efficient message　
passing, private-access deques

• Task synchronization → Collective, individual

• Coarse-grained parallelism → Polling

• Fine-grained parallelism → Adaptive stealing
strategies, granularity control

Channels
Simple message passing abstraction:
bool channel_send(Channel *, void *, size_t);

bool channel_receive(Channel *, void *, size_t);

Bounded FIFO message queues

Building blocks: MPSC SPSC

struct steal_request {
 Channel *chan;
 int thief;
 // ...
};

Steal Requests

struct steal_request req = {

 .chan = ,

 .thief = ID,

 // ...

};

int i = select_victim();

channel_send([i], &req, sizeof(req));

Steal Requests

 MPSC

 SPSC

Two channels per worker

Steal
Request

Steal Requests

W1 W2 W3

ACK:
Nothing

Steal Requests

W1 W2 W3

Steal
Request

Steal Requests

W1 W2 W3

Steal Requests

W1 W2 W3

Steal
Request

Steal Requests

W1 W2 W3

Idea: Eliminate ACKs by forwarding steal requests

Steal
Request

Steal Requests

W1 W2 W3

Idea: Eliminate ACKs by forwarding steal requests

Steal Requests

W1 W2 W3

Idea: Eliminate ACKs by forwarding steal requests

…

Forwarding

• reduces number of messages

• facilitates asynchronous stealing

• improves performance

Steal Requests

Benchmark: BPC with d = 105, n = 9, and t as shown (x-axis)

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
(m

s)

Task length (µs)

Acknowledging
Forwarding

…

…

H

Stealing Tasks

T

One task

T’

Send T or &T to thief

H

Stealing Tasks

T

One task

T’

Send T or &T to thief
Share memory by communicating*

*A. Gerrand, https://blog.golang.org/share-memory-by-communicating, 13 July 2010

https://blog.golang.org/share-memory-by-communicating

H

Stealing Tasks

T

tasks

Send &H’ to thief

bn/2c

T’ H’

Stealing Tasks

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Steal-one
Steal-half

Benchmark: SPC with n = 106 and t = 100 µs

Task length 100 µs

…

Stealing Tasks

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Steal-one
Steal-half

Benchmark: SPC with n = 106 and t = 10 µs

Task length 10 µs

Task Synchronization

Task Barrier
#include <stdio.h>
#include "tasking.h"

ASYNC_VOID_DECL (
 puts, const char *s, s
);

int main(void)
{
 TASKING_INIT();

 ASYNC(puts, "Order");
 ASYNC(puts, "Undefined");

 TASKING_BARRIER();

 ASYNC(puts, "Last");

 TASKING_EXIT();
 return 0;
}

#include <stdio.h>
#include <omp.h>

int main(void)
{
 #pragma omp parallel
 {
 #pragma omp master
 {
 #pragma omp task
 puts("Order");
 #pragma omp task
 puts("Undefined");
 }
 #pragma omp barrier
 #pragma omp master
 {
 #pragma omp task
 puts("Last");
 }
 }
 return 0;
}

Termination Detection with
Steal Requests

Problem: Detect when all workers are idle without
resorting to implicit communication

Idea: “Color” steal requests  

→ Avoids separate control messages

→ Termination follows from forwarding

Extended Steal Requests
struct steal_request {
 Channel *chan;
 int thief;
 enum {
 working,
 idle,
 reg_idle
 } state;
 // ...
};

Extended Steal Requests

struct steal_request {
 Channel *chan;
 int thief;
 enum {
 working,
 idle,
 reg_idle
 } state;
 // ...
};

working idle reg_idle

Extended Steal Requests

working idle reg_idle

// Manager receives req
switch (req.state) {
case idle:
 // Mark reg_idle
 break;
}

Steal
Request

(reg_idle)

Notifying the Manager

W1 W2 Manager

Update!

Notifying the Manager

W1 W2 Manager

Notifying the Manager

W1 W2 Manager

Steal request

Updates
Worker i

Worker j j2

i3

Manager

m2 m3

i1

m1

Update

Steal request

i2

j1

Task

(reg_idle)

struct steal_request {
 Channel *chan;
 int thief;
 enum {
 working,
 idle,
 reg_idle,
 update
 } state;
 // ...
};

// Manager receives req
switch (req.state) {
case update:
 // ...
 break;
case idle:
 // ...
 break;
}

Task Barrier
Impact of explicit communication

 0

 1000

 2000

 3000

 4000

 5000

 6000

 60 120 180 240

M
ax

. t
as

k
ba

rri
er

 la
te

nc
y

(µ
s)

Number of workers N

Return steal request after N attempts
Return steal request after 10 attempts

Task Barrier
Impact of explicit communication

 0

 20

 40

 60

 80

 100

 60 120 180 240

M
in

. t
as

k
ba

rri
er

 la
te

nc
y

(µ
s)

Number of workers N

Steal requests + cancel after barrier
Steal requests + worker 0 as manager

Intel OpenMP barrier

Worker 0 cancels a random
worker’s steal request

No additional
communication required

Channel-based Futures
int x = spawn f(n-1);
int y = f(n-2);
sync;

future fx = FUTURE(f, n-1);
int y = f(n-2);
int x = AWAIT(fx, int);

future fx = FUTURE(f, n-1);
int y = f(n-2);
int x = AWAIT(fx, int);

Channel-based Futures

1. Allocates a one-element SPSC channel
2. Creates a task, passing the channel

3. Returns a handle to the channel (future)

future fx = FUTURE(f, n-1);
int y = f(n-2);
int x = AWAIT(fx, int);

Channel-based Futures

1. Waits for the task to send its result
2. Receives and returns the result

3. Frees or recycles the channel

future fx = FUTURE(f, n-1);
int y = f(n-2);
int x = AWAIT(fx, int);

Channel-based Futures

Tries to schedule other work to avoid idling

Performance

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Futures w/ caching
Cilk Plus

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Futures w/ caching
Cilk Plus

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Futures w/ caching
Cilk Plus

Fork/join parallelism

Benchmarks from left to right:
Tree recursion with n = 34 and t = 1 µs | 14 Queens Problem | Cilksort of 108 integers

Adaptive Strategies

Adaptive Stealing

Adaptive Stealing

Steal-one Steal-half

Idea: Reevaluate strategy after stealsN

Count how many tasks have been executed:

M/N = 1

M/N < 2

M/N > 1 M/N � 2

M

Adaptive Stealing

Benchmark: BPC with d = 105, n = 9, and t = 10 µs

Task length 10 µs

 600

 800

 1000

 1200

 1400

 1600

 1800

 8 16 24 32 40 48

Ex
ec

ut
io

n
tim

e
(m

s)

Number of workers

Steal-half
Steal-adaptive N = 3
Steal-adaptive N = 5

Steal-adaptive N = 10
Steal-adaptive N = 25
Steal-adaptive N = 50

Steal-one

Adaptive Stealing

Benchmark: BPC with d = 1, n = 999,999, and t = 10 µs

Task length 10 µs

 0

 500

 1000

 1500

 2000

 2500

 8 16 24 32 40 48

Ex
ec

ut
io

n
tim

e
(m

s)

Number of workers

Steal-one
Steal-adaptive N = 3
Steal-adaptive N = 5

Steal-adaptive N = 10
Steal-adaptive N = 25
Steal-adaptive N = 50

Steal-half

Very Fine-grained Tasks

Benchmark: SPC with n = 106 and t = 1 µs

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Steal-one
Steal-half

Steal-adaptive

Task length 1 µs

for (i = 0; i < N; i++)
 ASYNC(f, i, ...);

Splittable Tasks

Benchmark: SPC with n = 106 and t = 1 µs

Task length 1 µs

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Number of workers

Steal-adaptive
Lazy work splitting

for (i = 0; i < N; i++)
 ASYNC(f, i, ...);

ASYNC_FOR (
 f, 0, N, ...
);

Lazy Binary Splitting
Assumes concurrent work-stealing deques:  
 
Worker splits when local deque is empty, otherwise
executes tasks sequentially

→ Splitting is lazy as opposed to eager

→ Chunking (granularity control) is implicit

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

Lazy Binary Splitting

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

Lazy Binary Splitting

A. Tzannes et al., Lazy Binary Splitting: A Run-Time Adaptive Work-Stealing Scheduler, PPoPP 2010

Available to thieves

1/2

Lazy Guided Splitting
Example: Four workers

Lazy Guided Splitting
Example: Four workers

Available to thieves

3/4

Lazy Adaptive Splitting
Example: Two workers are idle

Lazy Adaptive Splitting
Example: Two workers are idle

Available to thieves

2/3

Lazy Splitting

Neither strategy is truly lazy

Difficult to know which strategy works best  
 
→ Explicit communication solves this problem

Lazy Adaptive Splitting
Example: Worker receives two steal requests

Lazy Adaptive Splitting
Example: Worker receives two steal requests

Lazy Adaptive Splitting
Example: Worker receives two steal requests

Send to thieves

1/31/3

Performance
Lazy Splitting

Benchmark: Parallel loops of Fine, Coarse, Random, Increasing, and Decreasing Granularity

|{z}
Balanced

|{z}
Unbalanced

 0

 8

 16

 24

 32

 40

 48

FG CG RG IG DG

Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n
Binary splitting

Guided splitting
Adaptive splitting

Performance
Mixing tasks and splittable tasks

 0

 8

 16

 24

 32

 40

 48

9 99 999 9999 99999Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Size of splittable consumer tasks

Cilk Plus
Binary splitting

Guided splitting
Adaptive splitting

Benchmark: BPC with d = [104, 103, …, 1], n = [9, 99, …, 99999], and t = 10 µs

…

…

…

Performance
Mixing tasks and splittable tasks

Benchmark: BPC with d = [105, 104, …, 10], n = [9, 99, …, 99999], and t = 1 µs

 0

 8

 16

 24

 32

 40

 48

9 99 999 9999 99999Sp
ee

du
p

ov
er

 s
eq

. e
xe

cu
tio

n

Size of splittable consumer tasks

Single tasks
Binary splitting

Guided splitting
Adaptive splitting

…

…

…

Conclusion

Performance Ranking

2-socket Intel Xeon  
(24 threads)

1. Chase-Lev WS -1.6 %

2. Channel WS -2.4 %
3. Cilk Plus -4.6 %
4. Intel OpenMP -10.7 %

4-socket AMD Opteron 
(48 threads)

1. Chase-Lev WS -2.2 %

2. Channel WS -2.4 %
3. Cilk Plus -6.9 %
4. Intel OpenMP -21.8 %

60-core Intel Xeon Phi  
(240 threads)

1. Chase-Lev WS -13.7 %

2. Channel WS -13.7 %
3. Intel OpenMP -22.2 %
4. Cilk Plus -28.1 %

Average deviations from the best median speedups

21 benchmarks/workloads (20 in the case of Cilk Plus)

David Chase and Yossi Lev, Dynamic Circular Work-Stealing Deque, SPAA 2005

Summary
• Work-stealing runtime system with

• private deques

• channel communication

• Workers

• forward steal requests

• adapt their stealing strategy

• split tasks lazily

Flexibility ✔

Performance ✔

}

}

