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Abstract

Task parallel programming has become a popular and effective approach for
programming multicore systems. Tasks execute on top of threads, which are no
longer exposed but demoted to an implementation detail. This higher level of
abstraction makes it easier to identify opportunities for parallelism and leave ev-
erything else to the compiler and runtime system. An interesting question is al-
ways how to support the task abstraction on a new architecture, and, what is even
more important, how to arrive at an efficient implementation. In this paper, we
look at Intel’s Single-Chip Cloud Computer (SCC) and describe the design and
implementation of a tasking environment for the SCC. We focus on the runtime
system and compare two different implementations with work-sharing and work-
stealing schedulers that take advantage of the processor’s on-chip memory in order
to achieve scalable performance.

1 Introduction
Task parallel programming is a promising approach with the potential to bridge the gap
between parallel and mainstream computing. Tasks are implemented as an abstraction
on top of threads to allow the programmer to readily express potential parallelism with-
out worrying about the target platform. Consequently, much of the efficiency of using
tasks depends on the runtime system support. As processor and thread counts keep
growing, runtime system efficiency becomes a more and more important issue.

Novel processor architectures are emerging to address the increasing inefficiencies
in conventional chip multiprocessors (CMPs). Important questions are thus: Can we
build task abstractions that map well to such architectures? Is it possible to support ap-
plications with fine-grained irregular parallelism? And, if so, what about the expected
performance?
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The Single-Chip Cloud Computer (SCC) is a 48-core experimental processor cre-
ated by Intel Labs to serve as a platform for manycore software research [16, 20]. The
SCC is designed to be a message-passing chip where cores communicate through non-
cache-coherent shared memory. In this paper, we describe our approach to support
task parallel programming on the SCC. We use a task model derived from OpenMP
3.0, which we think strikes a good balance between generality, expressiveness, and po-
tential performance [2, 6]. The central component of the tasking environment is the
runtime system, which is responsible for assigning tasks to worker threads and per-
forming load balancing. We outline two different scheduler implementations, based on
work-sharing and work-stealing, and compare their performance on three microbench-
marks. The results show that efficient schedulers can be built by taking advantage of
the processor’s shared on-chip memory.

Much of the remaining “verbosity” of task parallel programming compared to se-
quential programming can be effectively hidden by a compiler. Language constructs,
such as async and wait, make it straightforward to express potential parallelism
without having to specify what exactly makes up a task and how one is created and
enqueued. We briefly describe our initial support for task parallelism in a source-to-
source compiler and point out further research that we believe will be needed to target
future manycore systems.

2 The SCC Processor
The SCC was built with the goal of tackling the “coherency wall”—a likely scalability
bottleneck in future cache-coherent CMPs with many cores [17, 20]. The SCC has no
hardware cache coherence, but instead takes a more scalable approach to data-sharing,
effectively making it a cluster-on-a-chip. Processor cores are interconnected by a 2D
mesh network that can be used to pass data between cores. One-sided data transfers
between the on-chip shared memories allow the implementation of message passing
APIs for higher-level programming, such as the synchronous and asynchronous com-
munication functions provided by RCCE and iRCCE [20].

The SCC is a tiled multicore processor [25]. Each tile contains two Pentium-class
IA-32 cores (P54C), each with 16 KB L1 cache (instruction and data), 512 KB L2 cache
(256 KB per core), 16 KB shared SRAM, called the Message Passing Buffer (MPB),
and a Mesh Interface Unit (MIU) that connects to a router for inter-tile communication
[16]. There are 24 tiles, organized in a 6x4 array with I/O and memory controllers
on the periphery. In addition, each tile provides two globally accessible test-and-set
registers (one per core), which can be used to implement locks needed for mutual
exclusion. Locks are the only way to achieve synchronization; no atomic operations,
such as CAS, are available that work across the cores of the SCC.

The SCC is an interesting platform for software research because it supports both
distributed and shared memory spaces. From the point of view of the programmer, the
address space is divided into:

• Private off-chip memory for each core (fully cached in L1 and L2)

2



Figure 1: Components of a tasking environment for the SCC processor.

• Shared off-chip memory that can be accessed by all cores (uncacheable by de-
fault because of lack of cache coherence)

• Shared on-chip memory (of special memory type MPBT, which enables caching
in L1, but bypasses L2)

3 Tasking on the SCC
Figure 1 shows the components of our tasking environment. At the lowest level, we use
some functionality from RCCE [20], as well as our own library routines for accessing
MPB memory. Worker threads are based on the RCCE notion of “units of execution”
(UE), which are mapped to the cores of the chip. Each UE is assigned a rank from 0 to
N−1, whereN is the number of UEs the program is running on. We use these ranks to
define our worker IDs: UE 0 becomes worker 0, UE 1 becomes worker 1, and so on. We
designate worker 0 as the master to run the main program, which we call the root task.
Tasks that are spawned are descendants of root and thus child tasks. Note that we could
designate any other worker as master, provided that the program is started on more than
one UE. The root task refers to the code between the initializing and finalizing calls
to TASKING_INIT() and TASKING_EXIT(). This code is only executed by the
master; workers are waiting for spawned tasks and jump to TASKING_EXIT() after
the master has reached this point and ordered termination.

Figure 2 shows the basic structure of the scheduling loop that every worker is run-
ning. Workers are either working or idle, depending on whether they successfully
scheduled a task for execution. Scheduling is a two-step process in all distributed pool
implementations1. First, a worker tries to get a task from its local queue. If the local
queue is empty, the worker needs to check other queues in the system. What this means
is determined by the runtime in use. A work-sharing runtime could use a single queue
to keep all shared tasks in a central location. In this case, we have only one more queue

1We do not consider centralized pools here because of their scalability problems. A centralized pool
keeps all tasks in a central location, typically in a single queue, which is accessed by all workers.
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Figure 2: Basic structure of the worker scheduling loop. This structure is the same for
all task pool implementations in which tasks are distributed over multiple queues.

to check. If that queue is also empty, the worker stays idle until new tasks arrive. A
work-stealing runtime does not need extra queues for load balancing, but instead allows
workers to steal tasks from the queues of other workers.

The shared memory on the chip makes it possible to move tasks around without
going off-die, which has the potential to improve communication latency by up to a
factor of 15 [16]. Before we can use the MPBs as local stores for keeping tasks and
related metadata, we have to break with the “symmetric name space” model of RCCE,
which restricts the use of the MPBs to message passing [20]. In this model, MPB
memory is managed through collective calls, meaning that every worker must perform
the same allocations and in the same order with respect to other allocations. Thus, the
same buffers exist in every MPB, hence symmetric name space.

To gain full control over MPB memory, we use library routines that work with (ID,
offset) tuples. Whenever a worker allocates a block from its MPB, it creates a tuple
that stores the worker’s own ID and the allocation’s byte offset within the worker’s
MPB. RCCE tells us the starting address of each worker’s portion of MPB memory, so
ID and offset are sufficient to reconstruct the actual address of an allocation. Put and
get operations are implemented using memcpy, in the same way as in RCCE, making
sure that the data is actually written to or read from the target MPB instead of the
L1 cache. We use synchronization flags modeled after the whole-cache-line flags in
RCCE. Compressed single-bit flags and byte flags are currently not supported in our
implementation.

An important part of any tasking system are the task queues that store tasks for
later execution. To store tasks in MPB memory, we have implemented a double-ended
queue (deque) that is similar to the work-stealing deques of [5, 10], but lock-based
instead of lock-free (which is the only option on the SCC, see above). Tasks are stored
in a circular array of fixed size, with head pointing to the oldest task. New tasks are
inserted at tail. Producer and consumer can execute concurrently most of the time, but

4



if there is more than one producer that inserts tasks, all accesses require locking.
As an alternative, we could allocate one deque per tile instead of one deque per

worker [19]. Having two locks per deque, we could allow producer and consumer to
execute concurrently, even in the case of multiple producers. However, if a deque is
always shared by two workers, inserting a task (a frequent operation!) becomes less
efficient.

4 Runtime Systems
The runtime system, which implements the scheduler, is the central and performance
determining part of the tasking environment. The scheduler is responsible for assigning
tasks to worker threads and performing load balancing. It must operate as efficiently
as possible in order to provide applications with scalable performance. There are two
general approaches to scheduling task parallelism: work-sharing and work-stealing.

4.1 Work-Sharing Scheduling
Work-sharing is based on the idea of redistributing tasks to underutilized workers. A
trivial implementation of a work-sharing scheduler uses a single shared queue, for ex-
ample one of our deques. Our implementation is slightly different; we use both private
off-chip and shared on-chip memory for storing tasks.

Workers keep their tasks in private memory while the load is balanced and they
are not required to share. Tasks are stored in LIFO queues in the private memories of
the workers. Since a queue is completely private and other workers have no way to
access it, we can use a conventional list implementation without the need for locking.
In addition, we allocate a deque in the MPB of the master thread for work-sharing.
Workers that have enough tasks are responsible for moving some of their work to the
deque when they find that there are only few tasks left. Workers that run out of tasks
can turn to the deque to pick up new work. Note: It would be better to use a two-lock
deque for work-sharing, or an entirely different data structure that supports a higher
degree of concurrency (worth the effort?).

4.2 Work-Stealing Scheduling
In work-stealing scheduling, idle workers take the initiative to find new work. Every
worker has a local deque on which it operates. Whenever a worker finds its deque
empty, it attempts to steal a task from a deque of another worker, which, in the ideal
case, is not disrupted by the steal. The order in which a thief visits the deques of its vic-
tims depends on the victim selection strategy. We currently support two different strate-
gies: randomized and latency-oriented work-stealing. In randomized work-stealing,
victims are chosen uniformly at random [7]. In latency-oriented work-stealing, victims
are selected based on their distance in terms of (on-chip) network hops. A thief always
tries to steal from the same tile, before it checks for tasks on neighboring tiles and then
on tiles farther away, in increasing order of distance. The maximum number of hops
on the SCC is 8, see for example [20].
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4.3 Synchronization
Synchronization is required to coordinate the execution of tasks. We have adopted
a task model similar to that of OpenMP 3.0 [2, 6] with two primary synchronization
constructs, discussed in turn in the following sections.

4.3.1 Task Barrier

A taskbarrier waits for the completion of all pending tasks. This form of synchroniza-
tion is coarse-grained and can only be invoked from the master thread within the root
task. The call to TASKING_EXIT() includes a barrier, thus making sure that all tasks
that were spawned during the execution of the program have completed before telling
the worker threads to terminate.

A taskbarrier marks a global synchronization point—a point in the program where
all tasks are required to complete before execution can continue past that point. This is
not a barrier in the usual sense. Only the master checks into the barrier. Workers keep
running their scheduling loop and eventually become idle after finishing all tasks, at
which point the master is allowed to return from the barrier.

4.3.2 Task Wait

A taskwait waits for the completion of all direct children of the current task. This
form of synchronization allows fine-grained control over parent-child dependencies.
Note that this is not a deep taskwait: tasks may outlive their ancestors without proper
synchronization at the parent-child level.

4.3.3 Future

To synchronize with particular child tasks, we provide simple explicit futures. Futures
were first introduced in functional programming languages, such as Multilisp, a parallel
dialect of Scheme [15], and are gradually making their way into mainstream concur-
rent programming [9, 18]. Essentially, a future is a placeholder for an asynchronous
computation (that is, a placeholder for the result of a task). Forcing a future means
waiting for the result to arrive, rather than waiting for the task to complete. A worker
is free to pick up other tasks while a future is pending.

4.3.4 Implementation

The actual implementation of the synchronization constructs depends on the runtime
in use. A runtime must provide the functions RT_barrier(), RT_taskwait(),
and RT_force_future(), which are called from the tasking code. In the follow-
ing discussion, we focus on the work-stealing runtime. Listings 1-3 outline the basic
structure of our implementation.

When the master enters a taskbarrier, it doesn’t simply wait but helps make progress
when there is work to do. It first completes all local work and then participates in work-
stealing to help execute the remaining tasks. Because a task can always create new
tasks, the master must go back to checking its deque after a successful steal. When the
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void R T b a r r i e r ( void )
{

Task t a s k ;

e m p t y l o c a l q u e u e :
whi le ( MPB task pop ( queue , &t a s k ) )

e x e c u t e (& t a s k ) ;

whi le ( i d l e w o r k e r s ( ) != num workers−1) {
i f ( s t e a l (& t a s k ) ) {

e x e c u t e (& t a s k ) ;
goto e m p t y l o c a l q u e u e ;

}
}

}

Listing 1: Implementation of taskbarrier in work-stealing runtime.

task pool is empty and all workers have signaled that they are idle, the master returns
from the barrier.

When a worker enters a taskwait, it first searches for child tasks that are still in
the local deque. If one or more child tasks were stolen and are still in progress, the
worker tries to find other useful work by going off stealing. A taskwait has an associ-
ated counter to keep track of the number of children a task is waiting for. The counter is
allocated from the MPB of the worker that runs the parent (the joining task) and atom-
ically updated whenever a child is created or terminates2. Once the taskwait completes
by reading a count of zero, the memory can be freed or otherwise marked as reusable.

Unrestricted stealing within taskwait can have a negative effect on the workers’
stack size as stolen tasks execute on top of non-empty stacks. Stack space is not the
only problem. Deep recursion and many pending taskwaits can quickly exhaust MPB
memory. To avoid overflows, the runtime must take care not to allocate more MPB
memory than is available. Thus, if the MPB pressure becomes too large, new tasks
are executed sequentially. Tasks are created again once enough memory has been re-
claimed.

When a worker forces a future, it first checks to see if the result of the future is
already computed, and if so, it just returns the result. A future object is allocated from
the MPB of the worker that creates the future. It has an embedded synchronization flag
that is set once the result is ready. If the worker finds that the result is not ready, it
tries to resolve the future by looking at its current children. If executing them doesn’t
resolve the future, it means the child representing the future was stolen. We proceed
with leapfrogging and try to steal from the worker that has started to evaluate the future
[26]. This form of depth-restricted work-stealing may limit the available parallelism
and impact performance, but helps to keep a bound on memory consumption [14].

2In the current implementation, a task counter is a 64 byte object (int + flag, both padded to cache lines).
Note: We should be able to at least halve the required memory if we reliably fool the write combine buffer.
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void R T t a s k w a i t ( void ∗n u m c h i l d r e n )
{

Task t a s k ;

whi le ( M P B t a s k p o p c h i l d ( queue , &t a s k ) )
e x e c u t e (& t a s k ) ;

whi le ( MPB read ( ( MPB int ∗) n u m c h i l d r e n ) > 0) {
/ / U n r e s t r i c t e d work−s t e a l i n g
i f ( s t e a l (& t a s k ) )

e x e c u t e (& t a s k ) ;
}

}

Listing 2: Implementation of taskwait in work-stealing runtime.

void ∗R T f o r c e f u t u r e ( void ∗ f u t u r e )
{

Task t a s k ;
i n t v i c t i m ;

i f ( M P B f l a g i s s e t ( M P B f l a g p t r ( f u t u r e ) )
re turn f u t u r e ;

whi le ( M P B t a s k p o p c h i l d ( queue , &t a s k ) ) {
e x e c u t e (& t a s k ) ;
i f ( M P B f l a g i s s e t ( M P B f l a g p t r ( f u t u r e ) ) )

re turn f u t u r e ;
}

v i c t i m = g e t t h i e f ( f u t u r e ) ;

whi le ( M P B f l a g i s u n s e t ( M P B f l a g p t r ( f u t u r e ) ) {
i f ( l e a p f r o g ( v i c t i m , &t a s k ) )

e x e c u t e (& t a s k ) ;
}

re turn f u t u r e ;
}

Listing 3: Implementation of futures in work-stealing runtime.
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5 Preliminary Experimental Results
We compare performance on three microbenchmarks designed to evaluate the scalabil-
ity and efficiency of the runtime systems:

• Simple Producer-Consumer (SPC) benchmark: A single producer (worker ID 0)
spawns n consumer tasks. Consumer tasks perform some computation for time t.
This benchmark allows us to test how many active consumers a single producer
can tolerate.

• Bouncing Producer-Consumer (BPC) benchmark [13]: A variation of the producer-
consumer benchmark with two kinds of tasks, producer and consumer tasks.
Each producer task creates another producer task followed by n consumer tasks,
until a depth of d is reached. Producer tasks do nothing besides spawning tasks.
Consumer tasks perform some computation for time t. This benchmark stresses
the ability of the runtime scheduler to find work and perform load balancing.

• Fibonacci-like tree-recursive benchmark: Modeled after the tree-recursive pro-
cess of computing Fibonacci numbers. Each task n ≥ 2 creates two child tasks
n − 1 and n − 2 and waits for their completion. Leaf tasks n < 2 that end the
recursion compute for time t. This benchmark includes the runtime overhead
that is incurred to keep track of parent-child dependencies.

The SCC is used in the default configuration, with cores clocked at 533 MHz, routers
at 800 MHz, and DDR3-800 memory. Work-sharing and work-stealing runtimes are
configured to use a deque size of 10, that is, at most 10 tasks are stored per deque and
MPB3. The work-stealing runtime uses the default randomized victim selection.

In our experiments, we focus on scaling rather than raw performance. We choose
three different task sizes t, roughly representing fine, medium, and coarse-grained par-
allelism. Scalable performance under varying workloads will be critical to support
applications with dynamic parallelism.

5.1 Work-Sharing Scheduling
The top row of Figure 3 shows the results for the work-sharing runtime. Work-sharing
is only an option for relatively coarse-grained parallelism. The shared deque in the
MPB of the master thread is a significant bottleneck that quickly limits scalability
when workers are frequently searching for tasks. In fact, contention for the deque
can become so high that performance starts to degrade. We would have to manage con-
tention explicitly, for example by backing off before trying to access the deque again,
in order to maintain the same level of performance. For very fine-grained workloads,
work-sharing is not practical.

5.2 Work-Stealing Scheduling
The bottom row of Figure 3 shows the results for the work-stealing runtime. Work-
stealing delivers good performance on medium to fine-grained parallelism. Very fine-

3A deque of 10 tasks takes up 1504 KB, which is almost 20% of the available MPB memory of a worker.
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Figure 3: Performance of work-sharing (top row) and work-stealing (bottom row) run-
time schedulers on SPC, BPC, and tree-recursive benchmarks. The numbers of tasks
are 100 000 for SPC and BPC and 242 784 for Fib-like.

grained parallelism on the order of a few microseconds per task is hard to exploit
efficiently due to the cost of task creation and scheduling. Efficiency drops to around
30% in BPC and tree-recursive benchmarks with tasks of 10µs.

We see only one case where work-stealing is outperformed by work-sharing: on
the SPC benchmark with large tasks. There are two reasons for the poor scaling: (1)
The deques in MPB memory are fixed-size, and when full, require that new tasks are
inlined and executed sequentially. The decision to inline a task is always a potential
source of load imbalance, especially if the inlining worker is the only producer of tasks.
(2) Unlike work-sharing, work-stealing involves probing deques, often randomly, as in
this case, until a deque is found from which it is possible to steal. This probing is
unnecessary in the SPC setting and likely adds to the time it takes to find new work.

It is relatively straightforward to improve work-stealing performance on SPC type
of workloads. Increasing the deque size, perhaps dynamically at runtime, or trying to
insert tasks in remote deques could effectively prevent producers from inlining large
tasks. In cases where the single producer doesn’t switch its place, directing work-
stealing towards the deque of the producer could reduce consumer idle time.

The BPC benchmark shows better scaling than SPC because producer tasks can
execute in parallel with other producer tasks. As a result, more parallelism is available
for load balancing and there is generally less contention for work compared to SPC.

10



Time
0%

20%

40%

60%

80%

100%

To
ta

l 
M

P
B

 u
s
a
g
e

(a) Work-sharing

Time
0%

20%

40%

60%

80%

100%

To
ta

l 
M

P
B

 u
s
a
g
e

(b) Work-stealing

Figure 4: Total MPB usage of work-sharing and work-stealing schedulers running the
tree-recursive benchmark with 48 workers. The minimum and the maximum allowed
MPB usage as set by the runtime are indicated by the bottom and top lines.

5.3 MPB Usage
Our preliminary experiments indicate that work-stealing is much more scalable and
thus practical than work-sharing. This performance advantage is not without a cost.
We measured the MPB usage of both schedulers running the tree-recursive benchmark
with 48 workers. One worker (worker ID 47) was excluded from the computation and
used to collect the data from all the other workers. The results should tell us something
about the pressure on MPB memory. Recursive taskwaits put a much higher pressure
on the MPBs than synchronizing with taskbarrier because every taskwait requires a
synchronization variable (num_children in Listing 2) to count the number of chil-
dren. After a taskwait completes, the synchronization variable can be reused.

The minimum MPB usage can be obtained from the SPC or BPC benchmark (the
lower bound in Figure 4). Work-sharing is more space efficient than work-stealing,
primarily because it keeps only one deque compared to one deque per MPB. The
tree-recursive benchmark requires that MPB memory is allocated for every pending
taskwait. Tasks with return values (futures) need additional space to copy their results
back to their parents. The runtime must record the available MPB memory to avoid
overflows. Currently, we limit MPB usage to 90% (the upper bound in Figure 4). New
tasks that would exceed this limit are not created but inlined and executed sequentially.
Again, this decision could lead to some load imbalance.

6 Ongoing and Future Work
We consider two general directions for future work: (1) improving the programming
model by adding compiler support for task parallelism and (2) exploring new load
balancing strategies for future manycore processors.
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6.1 Compiler Support for Task Parallelism
A key advantage of having compiler support for task parallelism is that it allows to
shield the programmer from the details of interacting with the tasking environment.
Without compiler support, setting up the tasks in a program may require quite a bit of
effort. A compiler can automate that effort by inserting the necessary code for task
creation and synchronization.

Language constructs, such as async and wait, make it straightforward for pro-
grammers to denote potential parallelism and synchronization between tasks. A source-
to-source translation step takes care of rewriting the code and inserting appropriate
calls to the runtime library. We have started to implement our ideas as a set of language
extensions for the xoc compiler [11]. Xoc is a C compiler front end whose focus on ex-
tensibility makes it comparatively easy to prototype new language constructs. Listing
4 shows how async function calls are translated into tasks. Depending on the runtime
in use, the compiler generates different code to implement the task creation routine.

Language-level support for parallel loops can be built on top of these translations.
Because iterations of a parallel loop tend to be fine-grained, an important performance
optimization would be to bundle multiple iterations into a single task at runtime.

6.2 Load Balancing Strategies
The hybrid nature of the SCC makes it an interesting platform for software research.
There are many ways to load-balance a computation on a processor that supports both
distributed and shared memory spaces. Interesting questions include: Which runtime
strategies are the most efficient in the context of the SCC? Which strategies are general
enough that they can be adapted to work in distributed environments, such as clusters
of manycore processors? And what must be done to achieve global load balancing?

To answer these questions, it will be important to explore alternative runtime sys-
tems that differ from the common work-sharing and work-stealing approaches that
were originally designed for shared-memory parallelism. One such runtime system
could be based on partitioning the chip and assigning each partition to a manager thread
that is responsible for load balancing within its partition and for communicating with
the managers of other partitions. Worker threads could notify their managers when
they are idle (or better, ahead of time) and wait for tasks to arrive. Such a scheduler
could be adapted for distributed systems in which workers have no way to access the
task queues of other workers.

Similar message-passing schedulers have been proposed in [23]. Given fast mes-
saging between threads, efficient schedulers can be built using only private task queues.

7 Related Work
The importance of task parallel programming becomes evident in the wealth of work
going on to improve the status quo of mainstream parallel programming. Cilk has
explored many runtime techniques that are of importance today, first and foremost
the scheduling of tasks by work-stealing [7]. The most prominent and widely used
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i n t d o s t h ( i n t a , i n t b ) ;

z = async d o s t h ( x , y ) ;
. . .
wait z ;

/ / i s t r a n s l a t e d i n t o
/ / a s t r u c t f o r t h e argument v a l u e s
s t r u c t d o s t h t a s k d a t a {

i n t a , b ;
} ;

/ / a wrapper f u n c t i o n t o e x e c u t e t h e t a s k
void d o s t h t a s k f u n c ( s t r u c t d o s t h t a s k d a t a ∗ d a t a )
{

i n t tmp0 = da ta−>a ;
i n t tmp1 = da ta−>b ;
i n t tmp2 = d o s t h ( tmp0 , tmp1 ) ;

/ / Update f u t u r e w i t h tmp2
/ / . . .

}

/ / a wrapper f u n c t i o n t o c r e a t e t h e t a s k
/ / or i n l i n e i t i f t h a t i s r e q u i r e d
void d o s t h a s y n c ( i n t x , i n t y , M P B i n t w i t h f l a g ∗ f )
{

Task t a s k ;
s t r u c t d o s t h t a s k d a t a ∗ d a t a ;

/ / F i l l i n argument v a l u e s
d a t a = ( s t r u c t d o s t h t a s k d a t a ∗) t a s k . d a t a ;
da t a−>a = a ;
da t a−>b = b ;

/ / S e t u p t a s k me tada ta
/ / . . .

/ / Try t o enqueue t a s k
/ / . . .

}

/ / and t h e r e w r i t t e n code a t t h e c a l l s i t e
M P B i n t w i t h f l a g ∗ z = MPB malloc ( s i z e o f (∗ z ) ) ;
d o s t h a s y n c ( x , y , z ) ;
. . .
z = ∗( i n t ∗) R T f o r c e f u t u r e ( z ) ;
MPB free ( z ) ;

Listing 4: Compiler support for async function calls.
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libraries for task parallel programming include Java Concurrency Utilities (JUC) [21],
Intel’s Threading Building Blocks (TBB) [22], Microsoft’s Task Parallel Library (TPL)
for .NET [18], and Apple’s Grand Central Dispatch (GCD) [3].

OpenMP 3.0 has started to shift its focus from threads to tasks to better handle
unstructured parallelism [6]. The task model we describe in this paper is similar to that
of OpenMP4. In fact, our implementation could serve as a starting point for porting
OpenMP to the SCC.

The High Productivity Computing Systems (HPCS) languages Chapel [12], Fortress
[4], and X10 [24] share a common approach of expressing parallelism in terms of tasks
rather than threads. Chapel, for example, is designed from the ground up with task
parallelism in mind. Even data parallel constructs, such as forall loops, are imple-
mented on top of tasks.

Other languages introduce task-like concepts to express concurrency, such as the
goroutines in the Go Programming Language [1]. A goroutine is essentially a task; it
defines a function that may execute in parallel with the code that called the goroutine.
Whether a thread is spawned for each goroutine or whether goroutines are mapped to
long-lived threads is an implementation detail and not something the user needs to be
concerned with.

X10 and Habanero-C, a research language derived from an earlier version of X10,
are in the process of being ported to the SCC [8, 19]. Preliminary results are in line
with our findings that work-stealing works well on the SCC.

8 Conclusions
In this paper, we have described a tasking environment that enables task parallel pro-
gramming on the SCC experimental processor. We have shown that efficient schedulers
can be built by taking advantage of the processor’s shared on-chip memory. One prob-
lem that remains is the rather limited size of this memory. Even if we limit the number
of tasks in advance, the runtime system may take up a significant portion of the avail-
able memory, leaving little space for other uses. We continue to search for ways to
reduce this memory pressure, without sacrificing too much on the performance side.

Tasks are becoming an important abstraction for parallel programming. But the
future of parallelism is far from clear. Task abstractions and their implementations will
have to continue to evolve for some time to come.
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