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1 Introduction
Go is a general-purpose programming language intended for systems programming [1].
We don’t provide a general description of Go, but instead we focus on its support for
concurrent programming, which is not the usual “threads and locks”, even if threads
and locks are still used under the covers. Programmers are encouraged to “not com-
municate by sharing memory” but “to share memory by communicating.” This style of
programming is reminiscent of message passing, where messages are used to exchange
data between concurrently executing processes and to coordinate execution. Instead of
using locks to guard access to shared data, programmers are encouraged to pass around
references and thereby transfer ownership so that only one thread is allowed to access
the data at any one time.

Go’s way of thinking can be found elsewhere: in programming Intel’s Single-Chip
Cloud Computer (SCC) research processor. The SCC is intended to foster manycore
software research, on a platform that’s more like a “cluster-on-a-chip” than a tradi-
tional shared-memory chip multiprocessor. As such, the SCC is tuned for message
passing rather than for “threads and locks”. Or as Jim Held commented on the lack
of atomic operations: “In SCC we imagined messaging instead of shared memory or
shared memory access coordinated by messages. [. . . ] Use a message to synchronize,
not a memory location.” [2, 3] So, we ask the question, isn’t Go’s concurrency model a
perfect fit for such a processor architecture? To find out, we start by implementing the
necessary runtime support on the SCC.

2 Concurrency in the Go Programming Language
Go’s approach to concurrency was inspired by previous languages that came before
it, namely Newsqueak, Alef, and Limbo. What all these languages have in common
is that they built on Hoare’s Communicating Sequential Processes (CSP), a formal
language for writing concurrent programs [4]. CSP introduced the concept of channels
for interprocess communication (not in the original paper but in a later book on CSP,
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also by Hoare). Channels in CSP are synchronous, meaning that sender and receiver
synchronize at the point of message exchange. Channels thus serve the dual purpose
of communication and synchronization. Synchronous or unbuffered channels are still
the default in Go (when no buffer size is specified), although the implementation has
evolved quite a bit from the original formulation and also allows asynchronous (non-
synchronizing) operations on channels.

Go’s support for concurrent programming is based on two fundamental constructs,
goroutines and channels, which we describe in turn in the following sections.

2.1 Goroutines
Think of goroutines as lightweight threads that run concurrently with other goroutines,
including the calling code. Whether a goroutine runs in a separate thread or whether
multiple goroutines are multiplexed onto the same thread is an implementation detail
and something the user should not have to worry about. A goroutine is started by prefix-
ing a function call or an anonymous function call with the keyword go. The language
specification says: “A go statement starts the execution of a function or method call
as an independent concurrent thread of control, or goroutine, within the same address
space.” [5] In other words, a go statement marks an asynchronous function call that
doesn’t wait until the goroutine returns before continuing with the next statement that
follows after it.

2.2 Channels
Channels are used for interprocess communication. Processes can send or receive mes-
sages over channels or synchronize execution using blocking operations. In Go, “a
channel provides a mechanism for two concurrently executing functions to synchro-
nize execution and communicate by passing a value of a specified element type.” [5]
Go provides both unbuffered and buffered channels. Channels are first-class objects (a
distinguishing feature of the Go branch of languages, starting with Newsqueak): they
can be stored in variables, passed as arguments to functions, returned from functions,
and sent themselves over channels. Channels are also typed, allowing the type system
to catch programming errors like trying to send a pointer over a channel for integers.

3 A Glimpse of the Future? The SCC Processor
The Single-Chip Cloud Computer (SCC) is the second processor developed as part of
Intel’s Tera-scale Computing Research Program, which seeks to explore scalable many-
core architectures and the techniques used to program them. The principal idea behind
the SCC is to abandon cache coherence with all the associated protocol overhead and
to adopt a programming model that has proven to be extremely scalable—message
passing. The result looks and is programmed very much like a cluster of workstations,
integrated on a single piece of silicon.
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Figure 1: The SCC processor: 6x4 tile array (left), 2-core tile (right)

3.1 Hardware Overview
At a high level, the SCC is a 48-core processor with a noticeable lack of cache coher-
ence between cores. It does support shared memory, both on-chip and off-chip, but
it’s entirely the (low-level) programmer’s responsibility to avoid working on stale data
from the caches (if caching is enabled at all). In the default configuration, most system
memory is mapped as private, making the SCC appear as a “cluster-on-a-chip”.

Figure 1 gives an idea of what the SCC looks like. It’s a tiled multicore processor
with 24 tiles arranged in a 6x4 mesh on-die network. Each tile contains two Pentium-
class IA-32 cores (P54C), each with 16 KB L1 instruction and data caches, 256 KB L2
cache per core, 16 KB shared SRAM, called the Message Passing Buffer (MPB), and
a router for inter-tile communication. The name of the shared SRAM suggests why
it has been included in the first place, namely as a communication buffer to support
low-latency message passing between cores.

3.2 Native Programming Model
One of the goals with the SCC is to explore scalable programming models, so it comes
as no big surprise that the native programming model is message passing, using an
API, known as RCCE (pronounced “rocky”), that should look familiar to users of MPI
[6]. Listing 1 shows an example RCCE program that uses message-passing to shift all
worker IDs to the right by one. For convenience, RCCE programs are usually run with
the command rccerun, which is basically a wrapper script around pssh to load an
executable on a specified number of processors (cores). In addition, rccerun makes
sure that the MPBs and test-and-set registers are cleared before starting the program.
So, assuming program 1 is run on three cores numbered 0, 1, and 2, core 0 will print 2,
core 1 will print 0, and core 2 will print 1, in some undetermined order.

The program we show here uses RCCE’s high-level interface, which provides send
and receive routines without exposing the underlying communication. RCCE also has
a low-level interface, which allows complete control over the MPBs in the form of
one-sided put and get operations—the basic primitives to move data around the chip.
RCCE includes an API to vary voltage and frequency within domains of the SCC, but
we won’t go into power management issues here.
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1 i n t main ( i n t argc , char ∗a rgv [ ] )
2 {
3 i n t ID , NUES, next , p r ev ;
4 i n t buf , i ;
5
6 RCCE ini t (& argc , &argv ) ;
7
8 ID = RCCE ue ( ) ;
9 NUES = RCCE num ues ( ) ;

10 n e x t = ( ID + 1) % NUES;
11 p rev = ( ID − 1 + NUES) % NUES;
12
13 f o r ( i = 0 ; i < 2 ; i ++) {
14 i f ( ( ID + i ) % 2 == 0)
15 RCCE send(&ID , s i z e o f ( ID ) , n e x t ) ;
16 e l s e
17 RCCE recv(&buf , s i z e o f ( buf ) , p r ev ) ;
18 }
19
20 p r i n t f ( ” Worker %d : %d\n ” , ID , buf ) ;
21
22 R C C E f i n a l i z e ( ) ;
23
24 re turn 0 ;
25 }

Listing 1: A simple RCCE program that exchanges messages between threads running
on different cores (units of execution or UEs in RCCE jargon).

4 Go’s Concurrency Constructs on the SCC
RCCE’s low-level interface allows us to manage MPB memory, but with an important
restriction. RCCE uses what it calls a “symmetric name space” model of allocation,
which was adopted to facilitate message passing. MPB memory is managed through
collective calls, meaning that every worker must perform the same allocations/deal-
locations and in the same order with respect to other allocations/deallocations. Thus,
the same buffers exist in every MPB, hence symmetric name space. Obviously, if we
want to go beyond MPI-like message passing, we must break with the symmetric name
space model to allow every worker to allocate/deallocate MPB memory at any time.

Suppose worker i has allocated a block b from its MPB and wants other work-
ers to access it. How can we do this? RCCE tells us the starting address of each
worker’s portion of MPB memory via the global variable RCCE_comm_buffer.
Thus, worker j can access any location in i’s MPB by reading from or writing to ad-
dresses RCCE_comm_buffer[i] through RCCE_comm_buffer[i] + 8191.
Note that in the default usage model, the 16 KB shared SRAM on a tile is equally
divided between the two cores. What worker j then needs to know is b’s offset within
i’s MPB. This offset o is easily determined by

int o = (int)b - (int)RCCE_comm_buffer[i];

and after communicating o to worker j, j can get a pointer to b through

void *b = (void *)((char *)RCCE_comm_buffer[i] + o);
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and use this pointer to access whatever is stored at this address. To summarize, passing
around (ID, offset) tuples allows us to break with the collective allocations model of
RCCE and use the MPBs more like local stores.

4.1 Goroutines as Tasks
We have previously implemented a tasking environment to support dynamic task par-
allelism on the SCC [7]. Specifically, we have implemented runtime systems based
on work-sharing and work-stealing to schedule tasks across the cores of the chip. If
we map a goroutine to a task, we can leave the scheduling to the runtime system, load
balancing included. Scheduling details aside, what go func(a,b,c); then does is
create a task to run function func using arguments a, b, and c, and enqueue the task
for later execution. Tasks are picked up and executed by worker threads. Every worker
thread runs a scheduling loop where it searches for tasks (the details depend on which
runtime is used). One thread, which we call the master thread, is designated to run the
main program between the initializing and finalizing calls to the tasking environment.
This thread can naturally call goroutines, but it cannot itself schedule goroutines for
execution. We need to have at least one worker thread to be able to run goroutines.
This is more or less a restriction imposed by the tasking environment, but we live with
that for now.

The go statement and its translation into C using our runtime library is currently
being implemented as a language extension for the xoc compiler [8]. Xoc is a C com-
piler frontend (a source-to-source translator) whose focus on extensibility makes it
comparatively easy to prototype new language constructs.

Figure 2 shows a pictorial representation of workers running goroutines (tasks).
Assume we start a program on three cores—say, core 0, core 1, and core 2—there will
be a master thread and two worker threads, each running in a separate process. Worker
threads create a coroutine for every goroutine they schedule to be able to transfer con-
trol from one goroutine to another. While a goroutine shares the address space with
other goroutines created by the same worker, goroutines created by different workers
also run in different address spaces (sharing memory is possible). This is a deviation
from the language specification, which states that goroutines run concurrently with
other goroutines, within the same address space. What we need is a mechanism to al-
low goroutines to communicate, regardless on which core they are running. Channels
in shared memory provide such a mechanism.

4.2 Channels
Our channel implementation takes advantage of the SCC’s on-chip memory for inter-
core communication. A channel is basically a blocking FIFO queue. Data items are
stored in a circular array, which acts as the channel’s internal buffer. Channel access has
to be lock-based because the SCC lacks atomic operations and only provides a small
number of test-and-set registers (one per core) for the purpose of mutual exclusion.

A buffered channel of size n has an internal buffer to store n data items (the internal
buffer has actually n + 1 slots to make it easier to distinguish between an empty and
a full buffer). If another item is send to the channel, the sender blocks until an item
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Figure 2: An example execution of a program with goroutines on three cores of the
SCC processor. In this example, worker 1 is running three goroutines, while worker 2
is running two goroutines. The master thread can call goroutines but not run them.

has been received from the channel. An unbuffered channel, which is the default in Go
when no size is given, is implemented as a buffered channel with an internal buffer to
store exactly one data item. Unlike a send to a buffered channel, however, a send to an
unbuffered channel blocks the sender until the receive has happened.

What the current implementation doesn’t include are functions to close a channel
and to peek at a set of channels simultaneously (Go’s select statement, which is like
a switch statement for channel operations).

4.3 Channel API
Basic channel functions
Channel *channel_alloc(size_t size, size_t n);
Allocates a channel for elements of size bytes in MPB memory. If the number of
elements n is greater than zero, the channel is buffered. Otherwise, if n is zero, the
channel is unbuffered. Note that, unlike in Go, channels are untyped. It would be per-
fectly okay to pass values of different types over a single channel, as long as they fit
into size bytes. Also note that the current implementation does not allow all combi-
nations of size and n. This is because the underlying allocator works with cache line
granularity, so we have to make sure that channel buffers occupy multiples of 32 bytes
((n+1)*size must be a multiple of 32).

void channel_free(Channel *chan);
Frees the MPB memory associated with channel chan.

bool channel_send(Channel *chan, void *data, size_t size);
Sends an element of size bytes at address data to channel chan. The call blocks
until the element could be stored in the channel buffer (buffered channel) or until the
element has been received from the channel (unbuffered channel).

bool channel_receive(Channel *chan, void *data, size_t size);
Receives an element of size bytes from channel chan. The element is stored at ad-
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dress data. The call blocks if the channel is empty.

Additional channel functions
int channel_owner(Channel *chan);
Returns the ID of the worker that allocated and thus “owns” channel chan.

bool channel_buffered(Channel *chan);
Returns true if chan points to a buffered channel, otherwise returns false.

bool channel_unbuffered(Channel *chan);
Returns true if chan points to an unbuffered channel, otherwise returns false.

unsigned int channel_peek(Channel *chan);
Returns the number of buffered items in channel chan. When called with an un-
buffered channel, a return value of 1 indicates that a sender is blocked waiting for a
receiver.

unsigned int channel_capacity(Channel *chan);
Returns the capacity (buffer size) of channel chan (0 for unbuffered channels).

4.4 Toy Examples
Fibonacci The main function in Listing 2 spawns a goroutine to print the Fibonacci
series up to the nth number. We use an unbuffered channel to signal completion af-
ter the goroutine has done its work. The thread running main between the initializ-
ing and finalizing calls to TASKING_init and TASKING_exit (the master thread)
cannot schedule goroutines for execution, so it will block on the channel in line 50
until print_numbers has signaled completion in line 35. Thus, the program re-
quires at least one more worker thread to run correctly. Worker threads pick up gor-
outines for execution and switch between goroutines that are blocked on channels.
Function print_numbers spawns produce_numbers as another goroutine with
which it communicates through two channels. The parameter n is exchanged over
an unbuffered channel chan1. The n + 1 Fibonacci numbers that are computed by
produce_numbers are exchanged over a buffered channel chan2 with a capac-
ity to hold up to seven numbers. When we run the program on two cores (master +
one worker), the worker runs both goroutines and switches between them as needed,
always sending and receiving the next seven numbers. When we run the program on
three cores (master + two workers), the two goroutines are placed on different cores
and run in parallel.

Prime Sieve The prime sieve example in Listing 3 closely follows the Go code pre-
sented in the Go language specification [5] and in the Go tutorial [9]. Numbers are
passed through a dynamic chain of goroutines. Each goroutine receives an input stream
of numbers, prints the first number in the stream (a prime), and passes all numbers that
are not multiples of the prime from the input to the output. Because we leak MPB
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memory in line 36, we can print only a few dozen prime numbers before running out
of MPB memory. An unbuffered channel takes up at least 160 bytes (four cache lines
to hold the data structure, plus a cache line of internal channel buffer). Go, on the other
hand, has a garbage collector, which reclaims memory behind the scenes, and which,
according to Rob Pike, is “essential to easy concurrent programming”. [10] We could
support a much larger number of channels in shared off-chip memory if communica-
tion latency is of secondary importance, but that doesn’t help with the memory leak in
this program.

5 Conclusion
We have presented a runtime implementation of Go’s concurrency constructs (gorou-
tines and channels) on a novel processor architecture, Intel’s SCC manycore research
chip. Both Go and the SCC share the basic idea of communicating and synchronizing
over messages rather than shared memory. Channels can be implemented very effi-
ciently using the available hardware support for low-latency messaging. One problem
in practice might be the small size of the on-chip memory, which limits the number of
channels that can be used simultaneously, as well as the size and number of data items
that are exchanged. Channels are certainly an interesting mechanism for coordinating
concurrently executing activities, regardless whether these are goroutines or tasks in
general. Building on our implementation, we plan to look into the design of message-
passing schedulers and see if channels can be used to handle all communication in such
systems.
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1 void produce number s ( Channel ∗chan1 , Channel ∗chan2 )
2 {
3 i n t f i b = 0 , f1 = 1 , f2 = 0 , i , n ;
4
5 c h a n n e l r e c e i v e ( chan1 , &n , s i z e o f ( n ) ) ;
6
7 f o r ( i = 0 ; i <= n ; i ++) {
8 i f ( i < 2) {
9 c h a n n e l s e n d ( chan2 , &i , s i z e o f ( i ) ) ;

10 c o n t i nu e ;
11 }
12 f i b = f1 + f2 ;
13 f2 = f1 ;
14 f1 = f i b ;
15 c h a n n e l s e n d ( chan2 , &f i b , s i z e o f ( f i b ) ) ;
16 }
17 }
18
19 void p r i n t n u m b e r s ( Channel ∗chan , i n t n )
20 {
21 Channel ∗chan1 , ∗chan2 ;
22 i n t f i b , done , i ;
23
24 chan1 = c h a n n e l a l l o c ( 3 2 , 0 ) ;
25 chan2 = c h a n n e l a l l o c ( 4 , 7 ) ;
26 go produce number s ( chan1 , chan2 ) ;
27 c h a n n e l s e n d ( chan1 , &n , s i z e o f ( n ) ) ;
28
29 f o r ( i = 0 ; i <= n ; i ++) {
30 c h a n n e l r e c e i v e ( chan2 , &f i b , s i z e o f ( f i b ) ) ;
31 p r i n t f ( ” f i b (%d ) = %d\n ” , i , f i b ) ;
32 }
33
34 done = 1 ;
35 c h a n n e l s e n d ( chan , &done , s i z e o f ( done ) ) ;
36 c h a n n e l f r e e ( chan1 ) ;
37 c h a n n e l f r e e ( chan2 ) ;
38 }
39
40 i n t main ( i n t argc , char ∗a rgv [ ] )
41 {
42 Channel ∗chan ;
43 i n t n = 42 , done = 0 ;
44
45 RCCE ini t (& argc , &argv ) ;
46 TASKING init ( ) ;
47
48 chan = c h a n n e l a l l o c ( 3 2 , 0 ) ;
49 go p r i n t n u m b e r s ( chan , n ) ;
50 c h a n n e l r e c e i v e ( chan , &done , s i z e o f ( done ) ) ;
51 a s s e r t ( done == 1 ) ;
52 c h a n n e l f r e e ( chan ) ;
53
54 TASKING exit ( ) ;
55 R C C E f i n a l i z e ( ) ;
56
57 re turn 0 ;
58 }

Listing 2: A toy example that prints the Fibonacci series up to the nth number.
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1 / / Send t h e s e q u e n c e 2 , 3 , 4 , . . . t o c h a n n e l chan
2 void g e n e r a t e ( Channel ∗chan )
3 {
4 i n t i ;
5
6 f o r ( i = 2 ; ; i ++)
7 c h a n n e l s e n d ( chan , &i , s i z e o f ( i ) ) ;
8 }
9

10 / / Copy t h e v a l u e s from c h a n n e l i n t o c h a n n e l out ,
11 / / removing t h o s e d i v i s i b l e by pr ime
12 void f i l t e r ( Channel ∗ in , Channel ∗out , i n t pr ime )
13 {
14 i n t i ;
15
16 f o r ( ; ; ) {
17 c h a n n e l r e c e i v e ( in , &i , s i z e o f ( i ) ) ;
18 i f ( i % pr ime != 0)
19 c h a n n e l s e n d ( out , &i , s i z e o f ( i ) ) ;
20 }
21 }
22
23 / / P r i n t t h e f i r s t n pr ime numbers
24 void s i e v e ( i n t n )
25 {
26 Channel ∗chan ;
27 i n t prime , i ;
28
29 chan = c h a n n e l a l l o c ( 3 2 , 0 ) ;
30 go g e n e r a t e ( chan ) ;
31 f o r ( i = 0 ; i < n ; i ++) {
32 Channel ∗chan1 = c h a n n e l a l l o c ( 3 2 , 0 ) ;
33 c h a n n e l r e c e i v e ( chan , &prime , s i z e o f ( pr ime ) ) ;
34 p r i n t f ( ”%d\n ” , pr ime ) ;
35 go f i l t e r ( chan , chan1 , pr ime ) ;
36 chan = chan1 ;
37 }
38 }
39
40 i n t main ( i n t argc , char ∗a rgv [ ] )
41 {
42 RCCE ini t (& argc , &argv ) ;
43 TASKING init ( ) ;
44
45 s i e v e ( 3 0 ) ;
46
47 TASKING exit ( ) ;
48 R C C E f i n a l i z e ( ) ;
49
50 re turn 0 ;
51 }

Listing 3: A toy example that prints the first n prime numbers. This program appears
in the Go language specification [5] and in the Go tutorial [9].
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