
Task Parallelism on the SCC

Motivation Tasking on the SCC

Preliminary Experimental Results

Summary of Results Outlook

[2] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Work-sharing

Work-sharing
 Poor choice if parallelism is fine-grained
 Can be practical for certain types of workloads

Work-stealing
 Much better scalability than work-sharing
 Current implementation puts pressure on MPB memory
 Tradeoff between performance and on-chip memory consumption 

Work-sharing and work-stealing schedulers are a good starting 
point for further runtime system research

 Message-passing schedulers? [3]
 Shared state ↓ Scalability ↑
 Research challenge: runtime systems should be performance 

portable to other (future) manycore platforms

[3] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS '10, pp. 311-322, 2010

Work-stealing

➊

➊ 

 



➊ Simple Producer-Consumer (SPC)
A single producer (worker ID 0) spawns n consumer 
tasks, which compute for time t.
Example: n = 5

 Bouncing Producer-Consumer (BPC) [2]
A variation of the producer-consumer benchmark 
with two kinds of tasks, producer and consumer 
tasks. Each producer task creates another 
producer task followed by n consumer tasks, until a 
depth of d is reached. Consumer tasks perform 
some computation for time t.
Example: n = 3, d = 3

 Fibonacci-like tree recursion
Each task n ≥ 2 spawns two child tasks n-1 and n-2 
and waits for their completion. Leaf tasks n < 2 end 
the recursion and compute for time t.
Example: n = 4

The SCC's on-chip MPB memory allows efficient task 
movement between cores
 MPB task queues based on one-sided put/get operations
 Small number of test-and-set registers is somewhat restrictive

Runtime system schedules tasks and performs load balancing
 Work-sharing of private tasks using a central MPB queue
 Work-stealing between MPB deques

Task synchronization via taskbarrier, taskwait [1], and futures
 taskbarrier: waits for the completion of all pending tasks
 taskwait: waits for the completion of all immediate child tasks 
 future: task that computes a result, forcing a future means waiting 

until the result is available

Compiler support desirable → work in progress 

Task parallel programming has become a popular and effective 
programming model for multicores

 High-level task abstraction (threads are implementation detail)
 All potential parallelism is expressed in terms of tasks
 Runtime system takes care of assigning tasks to threads

What about task parallel programming on the SCC?
We have implemented a tasking environment on top of RCCE

[1] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Andreas Prell Thomas Rauber
andreas.prell@uni-bayreuth.de thomas.rauber@uni-bayreuth.de

Applied Computer Science II – Parallel and Distributed Systems
Department of Computer Science, University of Bayreuth, Germany

mailto:andreas.prell@uni-bayreuth.de
mailto:thomas.rauber@uni-bayreuth.de

	Folie 1

