UNIVERSITAT

BAYREUTH

Task Parallelism on the SCC

Andreas Prell Thomas Rauber
andreas.prell@uni-bayreuth.de thomas.rauber@uni-bayreuth.de

Motivation Tasking on the SCC

Task parallel programming has become a popular and effective The SCC's on-chip MPB memory allows efficient task

programming model for multicores movement between cores
= MPB task queues based on one-sided put/get operations

= High-level task abstraction (threads are implementation detail) = Small number of test-and-set registers is somewhat restrictive

= All potential parallelism is expressed in terms of tasks

= Runtime system takes care of assigning tasks to threads Runtime system schedules tasks and performs load balancing
= Work-sharing of private tasks using a central MPB queue

What about task parallel programming on the SCC? = Work-stealing between MPB deques

We have implemented a tasking environment on top of RCCE

Task synchronization via taskbarrier, taskwait [1], and futures
= taskbarrier: waits for the completion of all pending tasks

= faskwait. waits for the completion of all immediate child tasks
Tasking = future: task that computes a result, forcing a future means waiting
until the result is available

User program

Runtime(s) Internal tasking

Compiler support desirable — work in progress

Task queues

MPB management RCCE

[1] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Preliminary Experimental Results

© Simple Producer-Consumer (SPC) Work-sharing
A single producer (worker ID 0) spawns n consumer
tasks, which compute for time t. "0 " — 100 000 - > N 9.d = 10000 / “1e e
Example: n=5 407 Task size) - 407 Task size / 40 T Task size
—— 1000ps o7 4 4, | —— 1000us i L, | —*— 1000ps

—— 100ps

e
7’
7’
’/
32 [— 100“5 ,,' 1OOHS ,/ ’,,
—&— 10ps /’ —&— 10ps P —&— 10ps /’ /
24 ‘ 24 24

. y Ny //
with two kinds of tasks, producer and consumer g f g / \\. g Z \\
0 \ _—#_ 4* 0 - = f | A 0 - | _‘|__ | * | A
32 40 8 16 24 32 40

tasks. Each producer task creates another
producer task followed by n consumer tasks, until a 0 8 16 24 32 40 4 o 8 16 24 48 0 48
depth Of d is reached Consumer tasks pencorm Number of workers Number of workers Number of workers

some computation for time t.
Example:n=3,d=3

® Bouncing Producer-Consumer (BPC) [2]
A variation of the producer-consumer benchmark

Speedup over serial execution

Speedup over serial execution

\
N
\
\
N\
] N
Speedup over serial execution

Work-stealing

ETETETIT I (T T e LLLLLLLLLLLL O - 1Y kbarrier

48 - 48

O n = 100 000 (2] n=9,d=10000

48 y;
J— g
© n=25 /
,I
> 40T Task size 2
// rd
o —&— 1000us % /.
. 32 b 100ps ,,,
7’
Rl —&— 10ps —&— 10ps R
s 24 24 o
. / /
// 7
’, /
v/
8 8
—k— 4
0 - | | | \ | \ 0 - | | | | | 0 - | | | |

|
0 8 16 24 32 40 48 0 8 16 24 32 40 48 0 8 16 24 32 40 48

40

40

Task size ~ Tasksize

~—— 1000ps
—— 100ps

—&—— 1000us
—#— 100ps
—&— 10pus

32

© Fibonacci-like tree recursion

Each task n =2 2 spawns two child tasks n-1 and n-2
and waits for their completion. Leaf tasks n < 2 end
the recursion and compute for time t.

Example: n=4

24

\

Speedup over serial execution

Speedup over serial execution
Speedup over serial execution

Number of workers Number of workers Number of workers

[2] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Summary of Results Outlook
Work-sharing Work-sharing and work-stealing schedulers are a good starting
= Poor choice if parallelism is fine-grained point for further runtime system research

= Can be practical for certain types of workloads
= Message-passing schedulers? [3]

Work-stealing = Shared state | Scalability 1
= Much better scalability than work-sharing = Research challenge: runtime systems should be performance
= Current implementation puts pressure on MPB memory portable to other (future) manycore platforms

= Tradeoff between performance and on-chip memory consumption

[3] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS '10, pp. 311-322, 2010

Applied Computer Science Il — Parallel and Distributed Systems

Department of Computer Science, University of Bayreuth, Germany

mailto:andreas.prell@uni-bayreuth.de
mailto:thomas.rauber@uni-bayreuth.de

	Folie 1

