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Motivation Tasking on the SCC

Task parallel programming has become a popular and effective The SCC's on-chip MPB memory allows efficient task

programming model for multicores movement between cores
= MPB task queues based on one-sided put/get operations

= High-level task abstraction (threads are implementation detail) = Small number of test-and-set registers is somewhat restrictive

= All potential parallelism is expressed in terms of tasks

= Runtime system takes care of assigning tasks to threads Runtime system schedules tasks and performs load balancing
= Work-sharing of private tasks using a central MPB queue

What about task parallel programming on the SCC? = Work-stealing between MPB deques

We have implemented a tasking environment on top of RCCE

Task synchronization via taskbarrier, taskwait [1], and futures
= taskbarrier: waits for the completion of all pending tasks

= faskwait. waits for the completion of all immediate child tasks
Tasking = future: task that computes a result, forcing a future means waiting
until the result is available
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[1] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Preliminary Experimental Results
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some computation for time t.
Example:n=3,d=3

® Bouncing Producer-Consumer (BPC) [2]
A variation of the producer-consumer benchmark
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© Fibonacci-like tree recursion

Each task n =2 2 spawns two child tasks n-1 and n-2
and waits for their completion. Leaf tasks n < 2 end
the recursion and compute for time t.

Example: n=4
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[2] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Summary of Results Outlook
Work-sharing Work-sharing and work-stealing schedulers are a good starting
= Poor choice if parallelism is fine-grained point for further runtime system research

= Can be practical for certain types of workloads
= Message-passing schedulers? [3]

Work-stealing = Shared state | Scalability 1
= Much better scalability than work-sharing = Research challenge: runtime systems should be performance
= Current implementation puts pressure on MPB memory portable to other (future) manycore platforms

= Tradeoff between performance and on-chip memory consumption

[3] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS '10, pp. 311-322, 2010
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