
Task Parallelism on the SCC

Motivation Tasking on the SCC

Preliminary Experimental Results

Summary of Results Outlook

[2] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Work-sharing

Work-sharing
 Poor choice if parallelism is fine-grained
 Can be practical for certain types of workloads

Work-stealing
 Much better scalability than work-sharing
 Current implementation puts pressure on MPB memory
 Tradeoff between performance and on-chip memory consumption 

Work-sharing and work-stealing schedulers are a good starting 
point for further runtime system research

 Message-passing schedulers? [3]
 Shared state ↓ Scalability ↑
 Research challenge: runtime systems should be performance 

portable to other (future) manycore platforms

[3] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS '10, pp. 311-322, 2010

Work-stealing

➊

➊ 

 



➊ Simple Producer-Consumer (SPC)
A single producer (worker ID 0) spawns n consumer 
tasks, which compute for time t.
Example: n = 5

 Bouncing Producer-Consumer (BPC) [2]
A variation of the producer-consumer benchmark 
with two kinds of tasks, producer and consumer 
tasks. Each producer task creates another 
producer task followed by n consumer tasks, until a 
depth of d is reached. Consumer tasks perform 
some computation for time t.
Example: n = 3, d = 3

 Fibonacci-like tree recursion
Each task n ≥ 2 spawns two child tasks n-1 and n-2 
and waits for their completion. Leaf tasks n < 2 end 
the recursion and compute for time t.
Example: n = 4

The SCC's on-chip MPB memory allows efficient task 
movement between cores
 MPB task queues based on one-sided put/get operations
 Small number of test-and-set registers is somewhat restrictive

Runtime system schedules tasks and performs load balancing
 Work-sharing of private tasks using a central MPB queue
 Work-stealing between MPB deques

Task synchronization via taskbarrier, taskwait [1], and futures
 taskbarrier: waits for the completion of all pending tasks
 taskwait: waits for the completion of all immediate child tasks 
 future: task that computes a result, forcing a future means waiting 

until the result is available

Compiler support desirable → work in progress 

Task parallel programming has become a popular and effective 
programming model for multicores

 High-level task abstraction (threads are implementation detail)
 All potential parallelism is expressed in terms of tasks
 Runtime system takes care of assigning tasks to threads

What about task parallel programming on the SCC?
We have implemented a tasking environment on top of RCCE

[1] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Andreas Prell Thomas Rauber
andreas.prell@uni-bayreuth.de thomas.rauber@uni-bayreuth.de

Applied Computer Science II – Parallel and Distributed Systems
Department of Computer Science, University of Bayreuth, Germany

mailto:andreas.prell@uni-bayreuth.de
mailto:thomas.rauber@uni-bayreuth.de

	Folie 1

