UNIVERSITAT
BAYREUTH

Task Parallel Programming Support for the Single-Chip Cloud Computer

Andreas Prell andreas.prell@uni-bayreuth.de, Thomas Rauber thomas.rauber@uni-bayreuth.de

Tasking on the SCC

Motivation

Task parallel programming is a popular and effective programming model for multicores
= High-level task abstraction (threads are implementation detail)
= All potential parallelism is expressed in terms of tasks

= Runtime system takes care of assigning tasks to threads

InteI Single-Chip Cloud Computer (S
Manycore software research vehicle
= Tiled architecture, 48 Pentium-class

= 384 KB shared on-chip SRAM (MPB), private/shared off-chip DRAM

CC) [1]

|A-32 cores

= Native programming model: message passing (think MP1) [2]
= Communication through non-cache-coherent shared memory

What about task parallel programming on the SCC?
Need runtime support for dynamic task parallelism

37 39 1 41 43 45
36 38 40 42 44

DDR3 MC

DDR3 MC

13 15 17 19 21
12 14 16 18 20

DDR3 MC

04 06 08

25 27 29 31 33
- - -
24 26 28 30 32

01 03 05 07 09
00 02

DDR3 MC

6x4 tile array

Two-core tile

[1] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS. In ISSCC 10, 2010

Shared on-chip memory allows efficient task movement between cores

= Task queue implementation based on one-sided put/get operations

= Small number of test-and-set registers (48) required for mutual exclusion
IS somewhat restrictive (no atomic operations on the SCC!)

Runtime system schedules tasks and performs load balancing
= Work-sharing of private tasks using a central task queue

User program

Tasking

Runtime(s) Internal tasking

Task queues

MPB management RCCE

Tasking stack

= Work-stealing between local deques

async conput e() creates a task to run conput e() asynchronously with the calling code

Task synchronization via taskbarrier, taskwait [3], and futures

= taskbarrier: waits for the completion of all pending tasks

= taskwait. waits for the completion of all immediate child tasks

= future: task that returns a result, forcing a future means waiting until the result is available

[2] T. G. Mattson et al. The 48-core SCC Processor: the Programmer's View. In SC 10, 2010 [3] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Preliminary Experimental Results Summary of Results

LCPC 2011

Stress tests @ spawns child tasks

") computes for time t

§ |[SPC n=wo000 1§ BPC n=9d=1000 1§ [Tree "=
§ 40 T Task size ,/', § 40 7 sk size % % 40 T Task size Work-steali
- 5 35— 1000us A, | —e— 1000 5 5 | —*— 1000k ork-stealing
imple Pr r-Consumer (SP s | —=— 1ooms s 2| —=— 100us y s | —®— 100ms . . .
Exarﬂ el e: l? ‘1'“5"9 Consumer (SPC) g o // 5 —— los / 2 ——os = Much better scalability than work-sharing -
. - n ’ n w24 P . . . ime
P g g / g / = Current implementation puts pressure on on-chip memory
................................... Taskbarrier © O 16 () o . .
s = o) = Tradeoff between performance and on-chip memory consumption
& g s - 2 - =
n &)
=t
48

Bouncing Producer-Consumer (BPC) [4]
Example: n=3,d =3

----------------------------------- Taskbarrier

Fibonacci-like tree recursion (Tree)
Example: n=4

................................... Taskwait

... Taskwait

......................... Taskwait

Work-sharing

48

0 8 16 24 32 40
Number of workers

Work-stealing

48

n = 100 000

SPC

40 -

" Task size
—<—— 1000ps

321 @ Toous

4
—&— 10us /’

24 77
’
/

Speedup over serial execution

Number of workers

Speedup over serial execution

48

[
16 24 32 40
Number of workers

48

40 -

BPC n=9,d= 10000 ’

/

" Task size

——— 1000ps
—— 100ps
—&— 10ps

24

[4] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Number of workers

Speedup over serial execution

48

48

24 32 40
Number of workers

40 -

Tree "=

" Task size

——— 1000ups
—— 100ps
—&—— 10us

24

Z4

Number of workers

L1
48

Work-sharing
= Poor choice if parallelism is fine-grained
= Can be practical for certain types of workloads

00 —
60% —

Total MPB usage

Figure: On-chip memory consumption of work-stealing running the tree-recursive benchmark with 48 workers.
The task queues, which were configured to have a maximum size of 10, account for roughly 20% of the available
memory. To avoid overflows, task execution is serialized if a worker has allocated 90% of its local memory.

Future Work

Work-sharing and work-stealing schedulers are a good starting point
for further runtime system research

= Message-passing schedulers [3]

= Reduce shared state to improve scalability

= Research challenge: runtime systems should be performance portable
to other (future) manycore platforms

[5] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS "0, pp. 311-322, 2010

Applied Computer Science Il — Parallel and Distributed Systems, Department of Computer Science, University of Bayreuth, Germany

mailto:andreas.prell@uni-bayreuth.de
mailto:thomas.rauber@uni-bayreuth.de

	Folie 1

