
Task Parallel Programming Support for the Single-Chip Cloud Computer

Motivation Tasking on the SCC

Preliminary Experimental Results Summary of Results

Future Work

[4] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009

Work-sharing
Work-sharing
 Poor choice if parallelism is fine-grained
 Can be practical for certain types of workloads

Work-stealing
 Much better scalability than work-sharing
 Current implementation puts pressure on on-chip memory
 Tradeoff between performance and on-chip memory consumption

Work-sharing and work-stealing schedulers are a good starting point
for further runtime system research

 Message-passing schedulers [5]
 Reduce shared state to improve scalability
 Research challenge: runtime systems should be performance portable

to other (future) manycore platforms

[5] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS '10, pp. 311-322, 2010

Work-stealing

Stress tests

Simple Producer-Consumer (SPC)
Example: n = 5

Bouncing Producer-Consumer (BPC) [4]
Example: n = 3, d = 3

Fibonacci-like tree recursion (Tree)
Example: n = 4

Shared on-chip memory allows efficient task movement between cores
 Task queue implementation based on one-sided put/get operations
 Small number of test-and-set registers (48) required for mutual exclusion

is somewhat restrictive (no atomic operations on the SCC!)

Runtime system schedules tasks and performs load balancing
 Work-sharing of private tasks using a central task queue
 Work-stealing between local deques

async compute() creates a task to run compute() asynchronously with the calling code

Task synchronization via taskbarrier, taskwait [3], and futures
 taskbarrier: waits for the completion of all pending tasks
 taskwait: waits for the completion of all immediate child tasks
 future: task that returns a result, forcing a future means waiting until the result is available

Task parallel programming is a popular and effective programming model for multicores
 High-level task abstraction (threads are implementation detail)
 All potential parallelism is expressed in terms of tasks
 Runtime system takes care of assigning tasks to threads

Intel Single-Chip Cloud Computer (SCC) [1]
 Manycore software research vehicle
 Tiled architecture, 48 Pentium-class IA-32 cores
 384 KB shared on-chip SRAM (MPB), private/shared off-chip DRAM
 Native programming model: message passing (think MPI) [2]
 Communication through non-cache-coherent shared memory

What about task parallel programming on the SCC?
Need runtime support for dynamic task parallelism

[3] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009

Andreas Prell andreas.prell@uni-bayreuth.de, Thomas Rauber thomas.rauber@uni-bayreuth.de

Applied Computer Science II – Parallel and Distributed Systems, Department of Computer Science, University of Bayreuth, GermanyLCPC 2011

[1] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS. In ISSCC '10, 2010
[2] T. G. Mattson et al. The 48-core SCC Processor: the Programmer's View. In SC '10, 2010

Figure: On-chip memory consumption of work-stealing running the tree-recursive benchmark with 48 workers.
The task queues, which were configured to have a maximum size of 10, account for roughly 20% of the available
memory. To avoid overflows, task execution is serialized if a worker has allocated 90% of its local memory.

6x4 tile array

Two-core tile

SPC

SPC

BPC

BPC

Tree

Tree

Tasking stack

computes for time t

spawns child tasks

mailto:andreas.prell@uni-bayreuth.de
mailto:thomas.rauber@uni-bayreuth.de

	Folie 1

