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Tasking on the SCC

Motivation

Task parallel programming is a popular and effective programming model for multicores
= High-level task abstraction (threads are implementation detail)
= All potential parallelism is expressed in terms of tasks

= Runtime system takes care of assigning tasks to threads

InteI Single-Chip Cloud Computer (S
Manycore software research vehicle
= Tiled architecture, 48 Pentium-class

= 384 KB shared on-chip SRAM (MPB), private/shared off-chip DRAM

CC) [1]

|A-32 cores

= Native programming model: message passing (think MP1) [2]
=  Communication through non-cache-coherent shared memory

What about task parallel programming on the SCC?
Need runtime support for dynamic task parallelism
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[1] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS. In ISSCC 10, 2010

Shared on-chip memory allows efficient task movement between cores

= Task queue implementation based on one-sided put/get operations

= Small number of test-and-set registers (48) required for mutual exclusion
IS somewhat restrictive (no atomic operations on the SCC!)

Runtime system schedules tasks and performs load balancing
=  Work-sharing of private tasks using a central task queue
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= Work-stealing between local deques

async conput e() creates a task to run conput e() asynchronously with the calling code

Task synchronization via taskbarrier, taskwait [3], and futures

= taskbarrier: waits for the completion of all pending tasks

= taskwait. waits for the completion of all immediate child tasks

= future: task that returns a result, forcing a future means waiting until the result is available

[2] T. G. Mattson et al. The 48-core SCC Processor: the Programmer's View. In SC 10, 2010 [3] E. Ayguadé et al. The Design of OpenMP Tasks. In IEEE TPDS, vol. 20, pp. 404-418, 2009
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[4] J. Dinan et al. Scalable Work Stealing. In SC '09, pp. 53:1-53:11, 2009
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Work-sharing
= Poor choice if parallelism is fine-grained
= Can be practical for certain types of workloads
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Figure: On-chip memory consumption of work-stealing running the tree-recursive benchmark with 48 workers.
The task queues, which were configured to have a maximum size of 10, account for roughly 20% of the available
memory. To avoid overflows, task execution is serialized if a worker has allocated 90% of its local memory.

Future Work

Work-sharing and work-stealing schedulers are a good starting point
for further runtime system research

= Message-passing schedulers [3]

= Reduce shared state to improve scalability

= Research challenge: runtime systems should be performance portable
to other (future) manycore platforms

[5] D. Sanchez et al. Flexible Architectural Support for Fine-Grain Scheduling. In ASPLOS "0, pp. 311-322, 2010
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