
Channel-based Work Stealing

Andreas Prell and Thomas Rauber

Department of Computer Science
University of Bayreuth, Germany

{andreas.prell,thomas.rauber}@uni-bayreuth.de

Abstract. Tasks have become a useful abstraction in parallel program-
ming; one that relies on runtime systems to provide efficient task schedul-
ing and load balancing. The scheduling strategy of choice is work steal-
ing, in which idle workers try to take some work from busy workers.
Current work-stealing schedulers are dependent on shared state in the
form of concurrent task queues, most often deques, while other imple-
mentations of work stealing based on message passing have largely been
geared towards distributed environments. This paper explores an alterna-
tive message-passing approach to work stealing that is centered around
communication over channels, concurrent building blocks dating back
to the idea of Communicating Sequential Processes. We propose a new
scheduler, in which worker threads operate on private deques and com-
municate with each other by sending steal requests and tasks over chan-
nels; no shared state is assumed internally. Our benchmark results on a
48-core multiprocessor and a 60-core Intel Xeon Phi show that there is
no significant slowdown due to channel communication: on average, the
channel-based scheduler is only a few percent slower than a scheduler
based on concurrent deques.

1 Introduction

Tasks have become a useful abstraction in parallel programming; one that al-
lows programmers to focus on finding potential parallelism and leave the job of
managing it to the runtime system. The scheduling strategy of choice is work
stealing, in which idle workers, called thieves, try to “steal” work from busy
workers, called victims, thereby load balancing a computation [8]. Work stealing
was popularized by Cilk [16] and has since found its way into many task-parallel
programming systems [29, 31, 23] and languages [10, 9, 4].

Work stealing was designed to work well on conventional shared-memory ma-
chines. Typical implementations use a set of concurrent data structures, most
often double-ended queues (deques), that are accessed by all workers in the sys-
tem. Implementations for distributed systems are either directly based on MPI
[12, 30] or layered on top of a global address space abstraction [28, 13]. In both
cases, the communication involved is very different from a shared-memory im-
plementation. Schedulers that store tasks in private deques, even though shared
memory is available, have been shown to achieve good performance while avoid-
ing expensive synchronization operations required by concurrent deques [5].



Recent trends in programming languages include a renewed interest in ex-
plicit communication. Modern concurrent languages, such as Go [1] and Rust
[2], support lightweight threads, which communicate by sending messages over
channels, rather than reading from and writing to shared variables. The idea of
channels goes back to Tony Hoare’s Communicating Sequential Processes (CSP)
[20]. Originally meant to synchronize execution of independently running pro-
cesses, channels are useful for both synchronous and asynchronous messaging.

On the processor architecture side, we can expect to see a rise of new designs,
as inefficiencies in general-purpose chips are increasing [17, 15]. A recent example
is Intel’s Single-Chip Cloud Computer (SCC) [24]. Although a research chip and
not a commercial product, the SCC provides a glimpse of how manycore chips
might evolve in the future: many smaller cores arranged in a grid, exchanging
messages to communicate and share data. With increasing core counts, the case
for “sharing by communicating” is only getting stronger [21].

In this paper, we explore work stealing based on channels. Similar to other
message-passing schedulers, all communication happens through sending mes-
sages over channels; no shared state is assumed internally, a valuable property
for the portability of the scheduler. Since task-parallel programming depends on
efficient runtime system support, we deem it unacceptable if channel communi-
cation incurred significant overhead and a loss of scalability and performance.
We test our scheduler on two shared-memory multiprocessors to see how it fares
against work stealing with concurrent deques. The results outlined in this paper
make us confident that channel-based work stealing is a viable alternative to
previous work-stealing implementations.

Our main contributions are thus: (1) We present a new work-stealing sched-
uler centered around private task queues and explicit communication over chan-
nels. Channels, inspired by recent programming languages, such as Go, are a
lightweight message passing abstraction, simple enough to allow the scheduler
to be ported to other platforms in the future. Work-stealing requests, tasks, and
termination detection messages are all delivered over channels. (2) We evaluate
our scheduler on two shared-memory multiprocessors, a 48-core AMD Opteron
SMP and a 60-core Intel Xeon Phi, by comparing performance with a work-
stealing scheduler based on concurrent deques. We find that channel communi-
cation comes at a reasonable cost in terms of performance: in most benchmarks,
the channel-based scheduler is 3-7% slower than the deque-based scheduler. In
a few benchmarks, however, the situation is reversed, and the channel-based
scheduler manages to outperform the deque-based scheduler.

2 Channel-based Work Stealing

Channels, in the original sense of CSP, serve the dual purpose of communication
and synchronization: channels are unbuffered so that sender and receiver syn-
chronize at the point of message exchange. While this behavior makes reasoning
about concurrent programs easier, it is too restrictive for use in a performance-
critical runtime system, where channel sends and receives should never block



(a) Reactive work-stealing (b) Proactive work-stealing

Fig. 1. Possible message flows for steal requests. With (a), every attempt at stealing
involves two messages: a request and an answer, either negative (no task) or positive
(task). We implement (b), which avoids any acknowledgment messages; steal requests
keep being forwarded until tasks are found. Steal requests and tasks are sent over
separate channels.

worker threads from making progress. The Go programming language, for ex-
ample, supports buffered channels for asynchronous sends and receives.

Channels behave like FIFO queues and hence preserve message order. We use
only a small number of channel functions, including alloc/free, send/receive, and
peek. Unbuffered channels that serve as synchronization points between threads
need not be supported; buffered channels are the default.

2.1 Steal Request Messages

Work stealing without sharing task queues requires cooperation between victims
and thieves. Rather than dealing out tasks on a regular basis [18], workers send
tasks in reaction to steal requests they receive. A steal request is fundamentally
a message containing the thief’s ID and a channel for sending tasks from victim
to thief. Additional information concerning the victim selection strategy or the
number of requested tasks may be included in a steal request. To bound the
number of steal requests in the system, we allow only one steal request per
worker to be pending at any given time. Every worker receives steal requests
and tasks independently of other workers, so that there is never more than one
receiver per channel, which in turn enables efficient channel implementations, for
example, when shared memory is available. The total number of channels grows
linearly with the number of workers: n workers communicate over 2n channels.

Unlike in other schedulers designed for use in message-passing environments
[12, 30], workers do not wait for an acknowledgment after sending a steal request
to some victim. This design decision reduces the number of messages and allows
workers to send steal requests ahead of time, before running out of local work.

Figure 1 illustrates our approach. Suppose workerW1 receives a steal request
from W2, but has zero tasks left. Rather than returning the steal request to W2,
saying the steal has failed (Figure 1(a)),W1 forwards the steal request to another
potential victim, W3 (Figure 1(b)). If W3 has tasks to spare, it can send some
using the channel contained in the steal request. Otherwise, W3 must forward
the steal request, or, if there is no potential victim left, send it back to W2 (for
reasons discussed in the next section). Effectively,W2 can start stealing before it
strictly needs to. For instance, W2 can send a steal request after dequeuing the



last task and before executing it. Ideally, when W2 runs out of tasks, new work
has already arrived, and W2 can continue without delay.

Randomly selecting some worker as a target for a steal request may be effi-
cient when tasks are equally distributed among workers. However, if only a few
workers have tasks left, steal requests are likely to pass through idle workers,
requiring more channel operations along the way and increasing overall work-
stealing latency. In deque-based work stealing, a thief can probe a victim’s deque
before committing a steal. If a deque turns out to be empty, the thief proceeds to
the next victim. To implement a similar strategy using channels, we allow chan-
nels to be closed, like in the Go language, and, in addition, to be reopened. Unlike
in Go, however, closing a channel means no further values will be received from
the channel (rather than sent to the channel), conveying to potential senders
that this channel should be skipped. Channels remain open as long as workers
have tasks to share. Closed channels are reopened once tasks become available
again.

2.2 Termination Detection

Workers are either active executing tasks or inactive searching for tasks. Ter-
mination detection is the problem of determining when all workers are inactive,
which means a task-parallel computation has finished or can proceed to the next
phase. Because of the nature of work stealing, inactive workers may become
active again at any point in time, as long as there are tasks in the system.

Termination detection is relatively straightforward to implement with shared
memory [19]. In our runtime, however, workers communicate exclusively over
channels; there is no shared state that can be used to collect information about
the system. Instead, we take the following approach: One worker keeps track
of steal requests and decides whether termination has occurred yet by counting
the number of inactive workers. We call this worker manager. There are two
complicating factors: (1) workers may send steal requests while still being active
(result of proactive stealing) and (2) work stealing happens between workers,
without the manager’s knowledge (a prerequisite for scalability). To deal with
(1), we extend the information contained in a steal request with a boolean idle
that tells whether a thief is in fact idle. Steal requests are eventually returned to
their original senders if no tasks could be found, allowing thieves to update their
steal requests to reflect any state change. Only a steal request with idle == true
counts towards the number of inactive workers. (2) may lead to early termination
detection, violating the safety property. Consider the following situation: Worker
I is idle, but is about to receive new tasks from worker J . As a result, I changes
state from idle to working. The manager, however, let’s say worker K, has no
way of knowing that I is no longer idle. Assuming J runs out of tasks and
becomes idle shortly after, the manager may falsely conclude that termination
has occurred. The solution to this problem is to inform the manager of the
worker’s state change: whenever a worker sends a task to another worker that is
idle, it must also send an update message to the manager.



Fig. 2. Updating the manager about the state of workers. ix, jx, and mx are events
denoting the sending or the receipt of a message. The receipt of the update message
m1 is guaranteed to happen before the receipt of any subsequent steal request from
worker I or worker J .

Figure 2 illustrates a possible ordering of message-send and message-receive
events. Expressed in terms of “happened before” [22], j1 → j2 (the update must
be sent before any task) and m1 → m3 (the update must be received before
any subsequent steal request from worker J). The FIFO property of channels
guarantees that m1 → m2 and m1 → m3, if and only if update and steal requests
travel over the same channel to the manager. If we used separate channels, we
would open the door for race conditions, which could lead to early termination
detection by the manager as described above. Note that, if worker I is not known
to be idle, there is no need to update the manager, and the message is omitted.

2.3 Synchronization

Synchronization is required to coordinate the execution of tasks. The task model
we use is similar to that of OpenMP 3.0 and later [3, 7], with two primary
synchronization constructs, a full task barrier and a task barrier for child tasks.
The latter is built on top of futures, for which we need an implementation that
does not rely on shared state.

The important insight is that futures can be viewed as channels. In other
words, a future opens up a channel over which the result will be delivered.
Setting the value of a future is equivalent to sending the value to the channel.
Forcing a future is equivalent to receiving the value from the channel. When the
value is needed, it is simply received from the channel, blocking the receiver if
the value is not computed yet.

Suppose we want to call function f asynchronously. f takes two integers as
arguments and returns an integer as a result. Creating a task to run f and
waiting for f’s result involves allocating a channel and storing a reference to the
channel in the task descriptor (part of the async macro and not shown here):

Channel *ch = channel_alloc(sizeof(int));
async(f, a, b, ch);
...
while (!channel_receive(ch, &x, sizeof(int)) ;



Note that channel ch should be buffered, or otherwise the sender blocks until
the matching receive occurs. The thread that scheduled the task uses the channel
reference in the task descriptor to send the result to the waiting thread:

int tmp = f(a, b); channel_send(ch, &tmp, sizeof(int));

The implementation in our runtime differs slightly from the basic code above.
We disallow busy-waiting until the future is set, so instead of trying to receive
from the channel in a tight loop, we pass control to a runtime library function
that schedules other work until the result is ready to be received:

Channel *ch = channel_alloc(sizeof(int));
async(f, a, b, ch);
...
await(ch, &x);

3 Experimental Evaluation

In this section, we show that our scheduler is practical and can achieve per-
formance comparable with conventional work stealing on recent shared-memory
systems. The implementation is tested on an AMD Opteron SMP and an Intel
Xeon Phi coprocessor. The SMP is equipped with four Opteron 6172 proces-
sors, each with 12 cores running at 2.1 GHz, and 128 GB of memory. The Xeon
Phi card has 60 cores clocked at 1.053 GHz and 8 GB of memory. Some of
the benchmarks allow us to explicitly set the task size t. In these cases, we
choose three different values for t, representing fine-grained, medium-grained,
and coarse-grained parallelism: 10µs, 100µs, and 1000µs. On the Xeon Phi, we
double these task sizes to account for the lower clock speed (1.053 GHz vs 2.1
GHz). The benchmarks used are:

SPC A simple producer-consumer benchmark. A single worker produces n tasks,
each running for time t. We choose n = 100 000.

BPC A variation of a producer-consumer benchmark with two kinds of tasks,
producer and consumer tasks [13]. Each producer task creates another pro-
ducer task followed by n consumer tasks, until a certain depth d is reached.
Consumer tasks run for time t. We choose n = 9 and d = 10 000, a particu-
larly challenging input for small values of t.

Treerec A simple tree-recursive computation, similar in structure to Fibonacci,
which is often used to estimate task scheduling overheads [14]. Each task
n ≥ 2 creates two child tasks n− 1 and n− 2 and waits for their completion.
Leaf tasks n < 2 perform some computation for time t before returning. We
choose n = 25, generating a total of 242 784 tasks.

Matmul Block matrix multiplication of two 2048 × 2048 matrices of doubles.
The matrix block size is 32.



LU Block LU decomposition of a sparse 4096×4096 matrix of doubles. The code
is based on the OpenMP version from the BOTS project [14]. The matrix
block size is 64.

Quicksort A recursive algorithm that performs an in-place sort of an array of
100 million integers. For sub-arrays ≤ 100 elements, the algorithm falls back
to using insertion sort, which is faster on small inputs.

UTS An algorithm that performs an exhaustive search on a highly unbalanced
tree [27]. The tree is generated implicitly; each child node is constructed from
the SHA-1 hash of the parent node and child index. As input, we choose
geometric trees T1L and T2L and binomial tree T3L, which all have about
100 million nodes.

In the following text, we use the abbreviation DQ to refer to the reference
work-stealing scheduler and CH to refer to the channel-based implementation.
DQ has one concurrent deque per worker, selects victims at random, and imple-
ments the termination detection barrier described in [19]. For better compari-
son, DQ uses the same implementation of future tasks as CH; see Section 2.3
for details. CH uses two types of channels, as summarized in Table 1: multiple-
producer, single-consumer (MPSC) channels for exchanging steal requests and
single-producer, single-consumer (SPSC) channels for transferring tasks and task
return values. A task contains a function pointer, the function’s arguments, and a
reference to its parent task. In both DQ and CH, a successful steal avoids copy-
ing heap-allocated tasks, but rather passes ownership of stolen tasks between
workers by copying references only. Steal requests in CH are not heap-allocated
and are thus copied when sent and received from channels. Update messages in
CH are treated as steal requests; see Section 2.2 for why this is required. Only
SPSC channels are wait-free; MPSC channels are blocking (sender side). Shared
deques in DQ and channels in CH are implemented as circular arrays. The array
sizes are large enough to prevent resizing at runtime. The private deques in CH
use a simple list-based implementation. All code is compiled with gcc -O3 (GCC
4.7.1, revision 189773) on the Opteron and icc -O2 -mmic (ICC 14.0.1.106, build
20131008) on the Xeon system. The reported execution times are the result of
taking averages over 20 runs.

Table 1. Overview of messages in the channel-based scheduler

Message type Description Size (bytes) Channel type
Steal request Request task (work-stealing attempt) 32 MPSC
Idle updates Tell manager a worker is no longer idle 32 MPSC
Task Send task to requesting worker 8 SPSC
Task return value Communicate task return value depends SPSC



 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Deque-based WS (steal-half)

Channel-based WS (steal-half)

(a) Task size 10µs

 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Deque-based WS (steal-half)

Channel-based WS (steal-half)

(b) Task size 100µs

 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Deque-based WS (steal-half)

Channel-based WS (steal-half)

(c) Task size 1000µs

Fig. 3. SPC benchmark performance results of deque-based and channel-based work-
stealing schedulers on the 4-way AMD Opteron SMP.

3.1 Importance of Chunking

First, we take a closer look at SPC. Figure 3 shows speedups over sequential
execution across different task sizes on the AMD Opteron SMP. We notice that
CH does not scale as well as DQ, which already achieves near-optimal perfor-
mance on 100µs tasks. Going further towards fine-grained parallelism, neither
CH nor DQ are able to scale beyond 16 workers. At this point, the time it takes
to distribute tasks from a single worker to all other workers outweighs the benefit
of parallel execution. Stealing a single task only to run out of work again shortly
after is obviously not the best strategy for scheduling fine-grained parallelism.

Figure 3 includes the results of stealing up to half of a victim’s tasks with a
single steal. Perhaps surprisingly, we see that CH scales better than DQ in Fig.
3(a). To understand this behavior, we examine work-stealing statistics collected
at runtime. With 32 threads, roughly 3000 successful steals are counted in DQ,
compared to 1500 in CH. With 48 threads, the number of steals has already
increased by more than a factor of ten to 37 000 in DQ, whereas in CH, the
number remains relatively low at 5000. In fact, 50% of all steals in DQ have a
chunk size of 1 or 2; only 10% transfer more than 16 tasks at once. For com-
parison, 50% of all steals in CH have a chunk size between 1 and 12, and 10%
succeed in chunking more than 130 tasks. On average, steal-half transfers larger
chunks of tasks between workers in CH, resulting in less load balancing activity
and better absolute performance than DQ.

3.2 Importance of Polling

Figure 4 compares BPC performance of DQ and CH on the AMD Opteron SMP.
We observe a striking difference between the schedulers. Except for small tasks,
DQ has no problems balancing this workload. CH, on the other hand, plateaus
around a speedup of 8, regardless of task size. Tasks are equally distributed
among workers, yet account for only 28% of the workers’ execution time in Fig.
4(c). The rest is spent exchanging steal requests and waiting for tasks.

In a sense, BPC is the perfect adversary to CH because BPC is designed to
stress the ability to quickly locate new work [13]. Producer tasks bounce back and
forth among workers so that there is no stable producer of tasks that could be



 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Channel-based WS (polling)

(a) Task size 10µs

 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Channel-based WS (polling)

(b) Task size 100µs

 0

 8

 16

 24

 32

 40

 48

 0  8  16  24  32  40  48

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Number of workers

Deque-based WS

Channel-based WS

Channel-based WS (polling)

(c) Task size 1000µs

Fig. 4. BPC benchmark performance results of deque-based and channel-based work-
stealing schedulers on the 4-way AMD Opteron SMP.

targeted reliably. Rather, performance is dependent on short message-handling
delays. Long-running tasks must be interruptible or otherwise steal requests start
to pile up, effectively blocking workers from making further progress. Figure 4
includes the results of a version that uses software polling to periodically yield
control to the runtime system and check for steal requests. While not as robust
as generating interrupts on message receive, polling succeeds as a low-overhead
mechanism for improving scheduler performance. The remaining overhead due
to channel communication in Fig. 4(c) is reduced to under 2%.

3.3 Summary

Figure 5 summarizes all benchmark results on our test systems. Matmul and
Sparse LU are characterized by parallel phases separated by barrier synchro-
nization. Sparse LU proves to be a challenging workload for CH because paral-
lelism is decreasing over the course of the computation so that communication
delays become visible. In later stages of the matrix decomposition, there are
simply not enough tasks left to keep every worker busy, with the consequence
that some steal requests circulate indefinitely. Failed steals are actually a bigger
problem in CH than in DQ because idle workers interrupt busy workers by send-
ing messages that must be handled, even though many messages may simply
end up being passed on to other workers. We have found that a simple backoff
strategy in fact improves performance in the case of Sparse LU: when stealing
fails repeatedly, idle workers back off and resend steal requests at a later time.
Termination detection is not affected by the backoff as long as only idle workers
are allowed to hold back and resend steal requests.

In general, CH performs well on divide-and-conquer-type applications in
which tasks are created recursively. Such applications tend to generate large
numbers of tasks, and even if the load is highly unbalanced, finding a worker
that can fulfill a steal request is less of a problem than in applications with flat
parallelism. CH even outperforms DQ on all tested UTS trees. UTS generates a
large number of very small tasks and, like SPC, benefits from steal-half. Again,
we notice the efficiency of chunking tasks in CH.

BPC, perhaps the most challenging workload in our setting, makes it clear
that performance of CH is sensitive to message-handling delays. In our tests,



 0

 8

 16

 24

 32

 40

 48

SPC
 sm

all

SPC
 m

edium

SPC
 large

BPC
 sm

all

BPC
 m

edium

BPC
 large

Treerec sm
all

Treerec m
edium

Treerec large

M
atm

ul

Sparse LU

Q
uicksort

U
TS T1L

U
TS T2L

U
TS T3L

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Deque-based WS

Channel-based WS

(a) AMD Opteron SMP

 0

 20

 40

 60

 80

 100

 120

SPC
 sm

all

SPC
 m

edium

SPC
 large

BPC
 sm

all

BPC
 m

edium

BPC
 large

Treerec sm
all

Treerec m
edium

Treerec large

M
atm

ul

Sparse LU

Q
uicksort

U
TS T1L

U
TS T2L

U
TS T3L

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
. 

e
x
e

c
u

ti
o

n

Deque-based WS

Channel-based WS

(b) Intel Xeon Phi

Fig. 5. Summary of 48-thread and 120-thread speedups on a 4-way AMD Opteron
SMP and Intel Xeon Phi compared to sequential execution. On the Xeon Phi, we made
sure that every core was running two threads.

we used polling to check for and service incoming steal requests. Generating
interrupts on message receive and jumping to the handling code in the runtime
would be a more robust solution, but unless it can be done very efficiently, polling
likely incurs less overhead, especially in unbalanced applications that generate a
constant stream of messages. The decision whether to use polling or interrupts
involves a trade-off one way or the other. In a perfect world, we would like to
see this problem addressed at the hardware level [32].

4 Related Work

Since the rise of multicore processors, now almost a decade ago, task parallelism
has taken center stage in the design of new libraries [29, 31, 23] and languages [4,
10, 9]. Cilk [16] has pioneered many runtime techniques that are of importance
today, first and foremost the scheduling of tasks by work stealing [8]. Work
stealing has become the algorithm of choice on shared-memory multiprocessors.
There is an increasing body of work on work stealing with concurrent deques
[6, 11, 25] (only to name a few), but work stealing is not confined to shared
memory. Dinan et al. describe work-sharing and work-stealing implementations
of the UTS benchmark using MPI [12]. In later papers, Dinan et al. show the
scalability of work stealing in the context of PGAS [13]. Runtime systems that
build on one-sided or two-sided communication libraries can also be found in
[28] and, more recently, in [26]. Ravichandran et al. combine conventional work
stealing with message passing at the node level to target clusters of multicore
processors [30]. Saraswat et al. introduce a load balancing extension to reduce
the performance penalty of work stealing on large-scale machines [33]. Sanchez
et al. propose hardware support for exchanging asynchronous messages between
threads in order to build efficient task schedulers for future manycore chips [32].

In a recent paper, Acar et al. prove that work-stealing algorithms with private
deques guarantee the same theoretical bounds as work-stealing algorithms with



concurrent deques [5]. The paper proposes a receiver-initiated algorithm, based
on steal requests, and a sender-initiated algorithm, similar to work dealing [18].
In both algorithms, worker threads communicate through a set of shared vari-
ables, relying on atomic operations to distribute tasks. In our scheduler, worker
threads communicate exclusively over channels, to the extent that porting the
scheduler to a new platform becomes a matter of writing a channel implemen-
tation for it.

5 Conclusion

In this paper, we have described a new work-stealing scheduler in which worker
threads coordinate scheduling and transfer tasks through channels. Channels
are a simple message passing abstraction, valuable for increasing the portability
of the scheduler. Our benchmarks have shown that there is no significant ab-
straction penalty due to channel communication on two recent shared-memory
machines: in most cases, the channel-based scheduler performs within 3-7% of a
deque-based scheduler. This conclusion is important because an inefficient sched-
uler would defeat the purpose of task-parallel programming. Efficient message-
passing schedulers will make it easier to target future manycores as well as
distributed environments.

Acknowledgment

This work is supported by the Deutsche Forschungsgemeinschaft (DFG).

References

1. The Go Programming Language. http://golang.org
2. The Rust Programming Language. http://rust-lang.org
3. OpenMP Application Program Interface Version 3.1. http://www.openmp.org/

mp-documents/OpenMP3.1.pdf (July 2011)
4. A Brief Overview of Chapel. http://chapel.cray.com/papers/BriefOverviewChapel.

pdf (January 2013)
5. Acar, U.A., Chargueraud, A., Rainey, M.: Scheduling Parallel Programs by Work

Stealing with Private Deques. pp. 219–228. PPoPP ’13 (2013)
6. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread Scheduling for Multipro-

grammed Multiprocessors. pp. 119–129. SPAA ’98 (1998)
7. Ayguadé, E., et al.: The Design of OpenMP Tasks. IEEE Trans. Parallel Distrib.

Syst. 20, 404–418 (March 2009)
8. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work

Stealing. pp. 356–368. FOCS ’94 (1994)
9. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the New Adventures of

Old X10. pp. 51–61. PPPJ ’11 (2011)
10. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,

von Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. pp. 519–538. OOPSLA ’05 (2005)



11. Chase, D., Lev, Y.: Dynamic Circular Work-Stealing Deque. pp. 21–28. SPAA ’05
(2005)

12. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.W.: Dynamic
Load Balancing of Unbalanced Computations Using Message Passing. pp. 1–8.
IPDPS ’07 (2007)

13. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able Work Stealing. pp. 53:1–53:11. SC ’09 (2009)

14. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. pp. 124–131. ICPP ’09 (2009)

15. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Dark
Silicon and the End of Multicore Scaling. pp. 365–376. ISCA ’11 (2011)

16. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Mul-
tithreaded Language. pp. 212–223. PLDI ’98 (1998)

17. Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B.C.,
Richardson, S., Kozyrakis, C., Horowitz, M.: Understanding Sources of Inefficiency
in General-Purpose Chips. pp. 37–47. ISCA ’10 (2010)

18. Hendler, D., Shavit, N.: Work Dealing. pp. 164–172. SPAA ’02 (2002)
19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA (2008)
20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA (1985)
21. Kumar, R., Mattson, T., Pokam, G., Wijngaart, R.: The case for message passing

on many-core chips. In: Hübner, M., Becker, J. (eds.) Multiprocessor System-on-
Chip, pp. 115–123. Springer New York (2011)

22. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7), 558–565 (Jul 1978)

23. Leijen, D., Schulte, W., Burckhardt, S.: The Design of a Task Parallel Library. pp.
227–242. OOPSLA ’09 (2009)

24. Mattson, T.G., et al.: The 48-core SCC Processor: the Programmer’s View. pp.
1–11. SC ’10 (2010)

25. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent Work Stealing. pp. 45–
54. PPoPP ’09 (2009)

26. Min, S.J., Iancu, C., Yelick, K.: Hierarchical Work Stealing on Manycore Clusters.
PGAS ’11 (2011)

27. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.:
UTS: An Unbalanced Tree Search Benchmark. pp. 235–250. LCPC ’06 (2007)

28. Olivier, S., Prins, J.: Scalable Dynamic Load Balancing Using UPC. pp. 123–131.
ICPP ’08 (2008)

29. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional (2005)

30. Ravichandran, K., Lee, S., Pande, S.: Work Stealing for Multi-core HPC Clusters.
pp. 205–217. Euro-Par’11 (2011)

31. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media (2007)

32. Sanchez, D., Yoo, R.M., Kozyrakis, C.: Flexible Architectural Support for Fine-
Grain Scheduling. pp. 311–322. ASPLOS ’10 (2010)

33. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based Global Load Balancing. pp. 201–212. PPoPP ’11 (2011)


